# QUANTILE normalization --------------------------------------------------
setwd("G:/Mi unidad/NASIR/SignaturesSandra/")
load("G:/Mi unidad/NASIR/NASIR_counts/NASIR_subread_allCounts_annotated_fpmk2.RData")
head(annotLookup2)
ann <- annotLookup2
pat <- openxlsx::read.xlsx("G:/Mi unidad/NASIR/MAIN_FOLDER_NASIR/MAIN_TABLE_v002.xlsx",2)
names(pat)
pat2 <- pat[,c(1,10)]
pat3 <- pat2[!is.na(pat2$TUMOR_RNA),]
names(ann)
ann2 <- ann[,c(2,64:93)]
head(ann2)
colnames(ann2) <- c("symbol", pat3$TUMOR_RNA)
ann3 <- ann2[ann2$symbol != "",]
ann4 <- data.frame(t(ann3[,-1]))
names(ann4) <- ann3$symbol
# save(ann4, file = "ann4.RData")
# Quitar los que no tengan datos ni varianza ------------------------------
tf_sum0 <- apply(ann4, 2, function(x) sum(x, na.rm = T)) == 0
ann5 <- ann4[,!tf_sum0]
# No hay var == 0
# tf_var0 <- apply(ann5, 2, function(x) var(x, na.rm = T)) == 0
# ann6 <- ann5[,!tf_var0]
# Quitar con algún NA
tf_sum_NA <- apply(ann5, 2, function(x) sum(is.na(x), na.rm = T)) > 0
ann6 <- ann5[,!tf_sum_NA]
# quantile ----------------------------------------------------------------
# library(raster)
# x <- 1:100
quantile(ann5$TSPAN6, seq(0, 10, by = 0.1))
library(gtools)
decil <- quantcut(ann4$TSPAN6, seq(0,1,by=0.1) )
levels(decil)
h <- 0
ann7 <- sapply(ann6, function(x)
{
h <<- h + 1
print(paste0(h, " - ", names(ann5)[h]))
decil <- quantcut(x, seq(0,1,by=0.1) )
as.numeric(decil)
})
ann7b <- data.frame(Pat = rownames(ann6), ann7)
# Log10 -------------------------------------------------------------------
ann8_log <- log10(ann7b[,-1])
ann8_log <- data.frame(Pat = rownames(ann6), ann8_log)
save(ann8_log, file = "ann8_log.RData")
# Groups mean -----------------------------------------------------------
#• Load groups of genes
gengr <- openxlsx::read.xlsx("G:/Mi unidad/NASIR/SignaturesSandra/Gene-signature.xlsx",3)
# Check if we have all the interesting genes
gengr$Genes[!gengr$Genes %in% colnames(ann7)]
un_gr <- unique(gengr$Group)
un_gen <- unique(gengr$Genes)
un_gen <- un_gen[which(un_gen != "NGK7")]
colnames(ann8_log) <- gsub("-",".",colnames(ann8_log) )
un_gen <- gsub("-",".",un_gen)
grep("HLA",colnames(ann8_log), value = T)
library(tidyverse)
ann9_fil <- tibble(data.frame(Pat = rownames(ann6),ann8_log[,colnames(ann8_log) %in% un_gen]))
library(dplyr)
names(ann9_fil)
grep("HLA",names(ann9_fil), value = T)
ann9_fil %>%
mutate(Inflamatory = CD274+CD8A+LAG3+STAT1,
Cytolytic32 = GZMA+PRF1,
Gajewski33 = CCL2+CCL3+CCL4+CD8A+CXCL10+CXCL9+GZMK+HLA.DMA+HLA.DMB+HLA.DOA+HLA.DOB+ICOS+IRF1,
InterferonGamaSig = CXCL10+CXCL9+HLA.DRA+IDO1+IFNG+STAT1,
AntigenPresenting = CMKLR1+HLA.DQA1+HLA.DRB1+PSMB10,
InterferonGamaBiology = CCL5+CD27+CXCL9+CXCR6+IDO1+STAT1,
TcellExhaustion = CD276+CD8A+LAG3+PDCD1LG2+TIGIT,
T_nK_sig = HLA.E,
RibasGeneInterferon = CCR5+CXCL10+CXCL11+CXCL9+GZMA+HLA.DRA+IDO1+IFNG+PRF1+STAT1,
Inflamatory_mean = (CD274+CD8A+LAG3+STAT1)/4,
Cytolytic32_mean = (GZMA+PRF1)/2,
Gajewski33_mean = (CCL2+CCL3+CCL4+CD8A+CXCL10+CXCL9+GZMK+HLA.DMA+HLA.DMB+HLA.DOA+HLA.DOB+ICOS+IRF1)/13,
InterferonGamaSig_mean = (CXCL10+CXCL9+HLA.DRA+IDO1+IFNG+STAT1)/6,
AntigenPresenting_mean = (CMKLR1+HLA.DQA1+HLA.DRB1+PSMB10)/4,
InterferonGamaBiology_mean = (CCL5+CD27+CXCL9+CXCR6+IDO1+STAT1)/6,
TcellExhaustion_mean = (CD276+CD8A+LAG3+PDCD1LG2+TIGIT)/5,
T_nK_sig_mean = (HLA.E)/1,
RibasGeneInterferon_mean = (CCR5+CXCL10+CXCL11+CXCL9+GZMA+HLA.DRA+IDO1+IFNG+PRF1+STAT1)/10) -> ann10_fin
ann9_fil %>% select(CD274,CD8A,LAG3,STAT1) %>%
transmute(Inflamatory = CD274 + CD8A + LAG3 + STAT1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.