#' Tau-U for single-case data
#'
#' This function calculates indices of the Tau-U family as proposed by Parker et
#' al. (2011a).
#'
#' @order 1
#' @inheritParams .inheritParams
#' @param method `"complete"` (default), `"parker"` or `"tarlow"`. The
#' `"parker"` calculates the number of possible pairs as described in Parker
#' et al. (2011) which might lead to tau-U values greater than 1. `"tarlow"`
#' follows an online calculator and R code developed by Tarlow (2017).
#' @param meta_analyses If TRUE, a meta analysis is conducted.
#' @param meta_weight_method String to specify the method for calculating the
#' weights of the studies. Either "tau" or "z".
#' @param ci Confidence intervals
#' @param ci_method String to specify the method for calculating the standard
#' error of tau. Either "tau", "z", or "s" (not recommended).
#' @param tau_method Character with values "a" or "b" (default) indicating
#' whether Kendall Tau A or Kendall Tau B is applied. Ignored for methods
#' 'tarlow' and 'parker'.
#' @param continuity_correction If TRUE, a continuity correction is applied for
#' calculating p-values of correlations (here: S will be reduced by one before
#' calculating Z). Ignored for methods 'tarlow' and 'parker'.
#' @return
#' \item{table}{A data frame containing statistics from the Tau-U
#' family, including: Pairs, positive and negative comparisons, S, and Tau}
#' \item{matrix}{The matrix of comparisons used for calculating the
#' statistics.} \item{tau_u}{Tau-U value.}
#' @details Tau-U is an inconsistently operationalized construct. Parker et al.
#' (2011b) describe a method which may result in Tau-U outside the \[-1;1\]
#' interval. A different implementation of the method (provided at
#' http://www.singlecaseresearch.org/calculators/tau-u) uses tau-b (instead of
#' tau-a as in the original formulation by Parker). Bossart et. al (2018)
#' describe inconsistencies in the results from this implementation as well.
#' Another problems lies in the calculation in overall Tau-U values from
#' several single cases. The function presented here applies a meta-analysis
#' to gain the overall values. Each tau value is weighted by the inverse of
#' the variance (ie. the tau standard error). The confidence intervals for
#' single cases are calculated by Fisher-Z transforming tau, calculating the
#' confidence intervals, and inverse transform them back to tau (see Long &
#' Cliff, 1997).
#' @author Juergen Wilbert
#' @family overlap functions
#' @references Brossart, D. F., Laird, V. C., & Armstrong, T. W. (2018).
#' Interpreting Kendall’s Tau and Tau-U for single-case experimental designs.
#' \emph{Cogent Psychology, 5(1)}, 1–26.
#' https://doi.org/10.1080/23311908.2018.1518687.
#'
#' Long, J. D., & Cliff, N. (1997). Confidence intervals for Kendall’s tau.
#' \emph{British Journal of Mathematical and Statistical Psychology}, 50(1),
#' 31–41. https://doi.org/10.1111/j.2044-8317.1997.tb01100.x
#'
#' Parker, R. I., Vannest, K. J., & Davis, J. L. (2011a). Effect Size in
#' Single-Case Research: A Review of Nine Nonoverlap Techniques.
#' \emph{Behavior Modification}, 35(4), 303–322. https://doi.org/10/dsdfs4
#'
#' Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011b).
#' Combining Nonoverlap and Trend for Single-Case Research: Tau-U.
#' \emph{Behavior Therapy, 42}(2), 284–299.
#' https://doi.org/10.1016/j.beth.2010.08.006
#'
#' Tarlow, K. R. (2017, March). Tau-U for single-case research (R code).
#' Retrieved from http://ktarlow.com/stats/
#'
#' @examples
#'
#' tau_u(Grosche2011$Eva)
#'
#' ## Replicate tau-U calculation from Parker et al. (2011)
#' bob <- scdf(c(A = 2, 3, 5, 3, B = 4, 5, 5, 7, 6), name = "Bob")
#' res <- tau_u(bob, method = "parker")
#' print(res, complete = TRUE)
#'
#' ## Request tau-U for all single-cases from the Grosche2011 data set
#' tau_u(Grosche2011)
#' @export
tau_u <- function(data, dvar, pvar,
method = c("complete", "parker", "tarlow"),
phases = c(1, 2),
meta_analyses = TRUE,
ci = 0.95,
ci_method = c("z", "tau", "s"),
meta_weight_method = c("z", "tau"),
tau_method = c("b", "a"),
continuity_correction = FALSE) {
# validity check ----
check_args(
by_call(tau_method),
by_call(ci_method),
by_call(method),
by_call(meta_weight_method),
within(ci, 0, 1)
)
method <- method[1]
tau_method <- tau_method[1]
meta_weight_method <- meta_weight_method[1]
ci_method <- ci_method[1]
if (method == "parker") {
#message("method = 'parker' ignores the tau_method argument.")
tau_method <- "a"
continuity_correction <- FALSE
}
if (method == "tarlow") {
#message("method = 'tarlow' ignores the tau_method argument.")
tau_method <- "a"
continuity_correction <- TRUE
}
# prepare scdf ----
if (missing(dvar)) dvar <- dv(data)
if (missing(pvar)) pvar <- phase(data)
phase(data) <- pvar
dv(data) <- dvar
data <- .prepare_scdf(data)
data <- recombine_phases(data, phases = phases)$data
# define "out" data structure ----
N <- length(data)
out <- list(
table = list(),
tau_u = list(),
method = method,
tau_method = tau_method,
phases = phases,
n_cases = N,
continuity_correction = continuity_correction,
Overall_tau_u = NA,
meta_analyses = meta_analyses,
meta_weight_method = meta_weight_method,
ci = ci,
ci_method = ci_method
)
# define tau table data structure -----
row_names <- c(
"A vs. B",
"Trend A",
"Trend B",
"A vs. B - Trend A",
"A vs. B + Trend B",
"A vs. B + Trend B - Trend A"
)
col_names <- c(
"pairs", "pos", "neg", "ties", "S", "D", "Tau", "CI lower", "CI upper",
"SD_S", "VAR_S", "SE_Tau", "Z", "p"
)
template_table_tau <- as.data.frame(matrix(
NA, length(row_names), length(col_names),
dimnames = list(row_names, col_names)
))
# tau-U for each case -----
for (case in 1:N) {
table_tau <- template_table_tau
# Extract A and B phase values
.isA <- data[[case]][[pvar]] == "A"
.isB <- data[[case]][[pvar]] == "B"
A <- data[[case]][.isA, dvar]
B <- data[[case]][.isB, dvar]
# drop NA
A <- A[!is.na(A)]
B <- B[!is.na(B)]
#
AB <- c(A, B)
nA <- length(A)
nB <- length(B)
nAB <- nA + nB
# create tau matrix -----------------------------------------------------
AvApos <- 0
AvAneg <- 0
AvAtie <- 0
BvBpos <- 0
BvBneg <- 0
BvBtie <- 0
AvBpos <- 0
AvBneg <- 0
AvBtie <- 0
for(i in 1:(nA-1)) {
AvApos <- AvApos + sum(A[i] < A[(i+1):nA])
AvAneg <- AvAneg + sum(A[i] > A[(i+1):nA])
AvAtie <- AvAtie + sum(A[i] == A[(i+1):nA])
}
for(i in 1:(nB-1)) {
BvBpos <- BvBpos + sum(B[i] < B[(i+1):nB])
BvBneg <- BvBneg + sum(B[i] > B[(i+1):nB])
BvBtie <- BvBtie + sum(B[i] == B[(i+1):nB])
}
AvBpos <- sum(vapply(A, function(x) x < B, FUN.VALUE = logical(nB)))
AvBneg <- sum(vapply(A, function(x) x > B, FUN.VALUE = logical(nB)))
AvBtie <- sum(vapply(A, function(x) x == B, FUN.VALUE = logical(nB)))
# Kendall tau analyses ----------------------------------------------------
if (method == "complete" && tau_method == "a") {
tau_s <- list(
AvB = kendall_tau(AB, c(rep(0, nA), rep(1, nB)), tau_method = "a", continuity_correction = continuity_correction),
AvA = kendall_tau(A, 1:nA, tau_method = "a", continuity_correction = continuity_correction),
BvB = kendall_tau(B, 1:nB, tau_method = "a", continuity_correction = continuity_correction),
AvB_A = kendall_tau(AB, c(nA:1, rep(nA + 1, nB)), tau_method = "a", continuity_correction = continuity_correction),
AvB_B = kendall_tau(AB, c(rep(0, nA), (nA + 1):nAB), tau_method = "a", continuity_correction = continuity_correction),
AvB_B_A = kendall_tau(AB, c(nA:1, (nA + 1):nAB), tau_method = "a", continuity_correction = continuity_correction)
)
} else {
tau_s <- list(
AvB = kendall_tau(AB, c(rep(0, nA), rep(1, nB)), tau_method = "b", continuity_correction = continuity_correction),
AvA = kendall_tau(A, 1:nA, tau_method = "b", continuity_correction = continuity_correction),
BvB = kendall_tau(B, 1:nB, tau_method = "b", continuity_correction = continuity_correction),
AvB_A = kendall_tau(AB, c(nA:1, rep(nA + 1, nB)), tau_method = "b", continuity_correction = continuity_correction),
AvB_B = kendall_tau(AB, c(rep(0, nA), (nA + 1):nAB), tau_method = "b", continuity_correction = continuity_correction),
AvB_B_A = kendall_tau(AB, c(nA:1, (nA + 1):nAB), tau_method = "b", continuity_correction = continuity_correction)
)
}
# n ----------------------------
table_tau$n <- lapply(tau_s, \(.) .$N)|>unlist()
# pairs -------------------------------------------------------------------
AvB_pair <- nA * nB
AvA_pair <- nA * (nA - 1) / 2
BvB_pair <- nB * (nB - 1) / 2
ABvAB_pair <- nAB * (nAB - 1) / 2
table_tau$pairs <- c(
AvB_pair, # A vs. B
AvA_pair, # A vs. A
BvB_pair, # B vs. B
AvB_pair + AvA_pair, # A vs. B - A vs. A
AvB_pair + BvB_pair, # A vs. B + B vs. B
AvB_pair + AvA_pair + BvB_pair # A vs. B + B vs. B - A vs. A
)
if (method == "parker") {
table_tau$pairs[4] <- AvB_pair # A vs. B - A vs. A
table_tau$pairs[6] <- ABvAB_pair # A vs. B + B vs. B - A vs. A
}
# pos/neg/ties ------------------------------------------------------------
table_tau$pos <- c(
AvBpos,
AvApos,
BvBpos,
AvBpos + AvAneg,
AvBpos + BvBpos,
AvBpos + BvBpos + AvAneg
)
table_tau$neg <- c(
AvBneg,
AvAneg,
BvBneg,
AvBneg + AvApos,
AvBneg + BvBneg,
AvBneg + BvBneg + AvApos
)
table_tau$ties <- c(
AvBtie,
AvAtie,
BvBtie,
AvBtie + AvAtie,
AvBtie + BvBtie,
AvBtie + BvBtie + AvAtie
)
# S -----------------------------------------------------------------
table_tau$S <- lapply(tau_s, \(.) .$S)|>unlist()
# D ----------------------------------------------------------------------
if (method == "complete" && tau_method == "b") {
table_tau$D <- lapply(tau_s, \(.) .$D)|>unlist()
table_tau$D[1] <- table_tau$pairs[1] - table_tau$ties[1] / 2
} else {
table_tau$D <- table_tau$pairs
}
# tau -----------------------------------------------------------
table_tau$Tau <- table_tau$S / table_tau$D
# SD and VAR --------------------------------------------------------------
if (method == "tarlow") {
table_tau$SD_S <- lapply(tau_s, \(.) .$sdS)|>unlist()
} else {
table_tau$SD_S <- c(
sqrt((nA * nB) * (nA + nB + 1) / 12) * 2,
kendall_tau(1:nA, 1:nA, tau_method = tau_method)$sdS,
kendall_tau(1:nB, 1:nB, tau_method = tau_method)$sdS,
tau_s$AvB_A$sdS,
tau_s$AvB_B$sdS,
tau_s$AvB_B_A$sdS
)
}
table_tau$VAR_S <- table_tau$SD_S^2
# Z, p, se ----------------------------------------
table_tau$Z <- lapply(tau_s, \(.) .$z)|>unlist()
table_tau$p <- lapply(tau_s, \(.) .$p)|>unlist()
table_tau$SE_Tau <- table_tau$Tau / table_tau$Z
# confidence intervals --------------------
if (!is.na(ci) && !is.null(ci)) {
if (ci_method == "s") {
see <- qnorm((1 - ci) / 2, lower.tail = FALSE)
S <- table_tau$S
if (continuity_correction) S <- S - 1
cis <- list(
tau_ci_lower = (S - table_tau$SD_S * see) / table_tau$D,
tau_ci_upper = (S + table_tau$SD_S * see) / table_tau$D
)
} else {
cis <- .tau_ci(
table_tau$Tau, table_tau$n, ci = ci, se_method = ci_method
)
}
} else {
cis <- list(tau_ci_lower = NA, tau_ci_upper = NA)
}
table_tau$`CI lower` <- cis$tau_ci_lower
table_tau$`CI upper` <- cis$tau_ci_upper
out$table[[case]] <- table_tau
out$tau_u[[case]] <- c(
"A vs. B - Trend A" =
table_tau["A vs. B - Trend A", "Tau"]
)
}
# Meta analysis ----------------------------------------------------
if (meta_analyses) {
out$Overall_tau_u <- .meta_tau_u(
out$table, ci = ci, se_method = meta_weight_method
)
} else {
out$Overall_tau_u <- NA
}
# return ------------------------------------------------------------------
names(out$table) <- names(data)
names(out$tau_u) <- names(data)
class(out) <- c("sc_tauu")
attr(out, opt("phase")) <- pvar
attr(out, opt("dv")) <- dvar
out
}
.meta_tau_u <- function(tau_matrix, ci, se_method) {
ci_z <- qnorm((1 - ci) / 2, lower.tail = FALSE)
.meta <- function(model) {
tau <- sapply(tau_matrix, function(x) x[model, "Tau"])
n <- sapply(tau_matrix, function(x) x[model, "n"])
out <- data.frame(Model = model)
res <- .meta_tau(tau, n, ci = ci, se_method = se_method)
out$Tau_U <- res$tau
out$se <- res$se
out$'CI lower' <- res$lower
out$'CI upper' <- res$upper
out$z <- res$z
out$p <- res$p
out
}
out <- data.frame(
Model = character(4),
Tau_U = numeric(4),
se = numeric(4),
'CI lower' = numeric(4),
'CI upper' = numeric(4),
z = numeric(4),
p = numeric(4),
check.names = FALSE
)
models <- c("A vs. B",
"A vs. B - Trend A",
"A vs. B + Trend B",
"A vs. B + Trend B - Trend A"
)
for(i in 1:length(models)) out[i,] <- .meta(models[i])
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.