Description Usage Arguments Value Author(s)
Calculates residual sum of squares (RSS)
Σ e_{i}^{2} = Σ_{i = 1}^{n} ≤ft( y_i - \hat{y_i} \right)^2 = ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^{\prime} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right) = \mathbf{e^{\prime} e }
, where
\mathbf{e} = \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}}
or
e = \mathbf{M} \mathbf{y}
.
1 | linreg_rss(beta_hat = NULL, X, y, m = FALSE)
|
beta_hat |
Vector of k estimated regression parameters.
If |
X |
The data matrix, that is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation. |
y |
n \times 1 vector of observations on the regressand variable. |
m |
Logical.
If |
Returns the residual sum of squares.
Ivan Jacob Agaloos Pesigan
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.