plot_intramodular_network: Function to visualize intramodular regulatory network

View source: R/network_visualization.R

plot_intramodular_networkR Documentation

Function to visualize intramodular regulatory network

Description

This function integrate R package igraph to visualize consequence of regulatory network analysis

Usage

plot_intramodular_network(
  TFs_list,
  enrichment = NULL,
  layout = "circle",
  group.cols = NULL,
  title.name = NULL,
  vertex.size = 25,
  vertex.label.color = "black",
  edge.label.color = "black",
  legend = TRUE,
  vertex.label.cex = 1.1,
  vertex.label.family = "ArialMT",
  frame.color = "white",
  arrow.size = 0.5,
  arrow.width = 0.8,
  edge.width = 2.5,
  edge.curved = 0,
  edge.color = c("#FDD1B0", "#B3B3B3"),
  vertex.label.degree = 0.35,
  vertex.label.dist = -6
)

Arguments

TFs_list

TFs_list generated by network_analysis

enrichment

Enrichment analysis results of genes in each module, generated by enrich_module. If it is not NULL, when plotting the Intramodular Network, the functions enriched by each module will be plotted in the diagram

layout

the layout to display the network, options: 'grid','sphere', 'circle','random'

group.cols

colors for group in network

title.name

the name of the title

vertex.size

vertex size

vertex.label.color

ertex label color

edge.label.color

edge label color

legend

logic, indicating whether to show the legend

vertex.label.cex

The label size of vertex

vertex.label.family

vertex label family

frame.color

frame.color

arrow.size

arrow size

arrow.width

arrow width

edge.width

edge width

edge.curved

edge curvature

edge.color

edge color. You need to input two colors, first one indicate 'Positive' regulation, second one indicate 'Negative' regulation.

vertex.label.degree

The position of the label in relation to the vertex (This parameter is valid only when the enrichment does not equal null)

vertex.label.dist

Distance between the label and the vertex (This parameter is valid only when the enrichment does not equal null)

Value

figure

Examples

#'
load(system.file("extdata", "test_clustering.rda", package = "IReNA"))
Kmeans_clustering <- add_ENSID(test_clustering, Spec1 = "Hs")
cor0.6 <- get_cor(Kmeans_clustering, Tranfac201803_Hs_MotifTFsF, 0.6, start_column=3)
TFs_list <- network_analysis(cor0.6,Kmeans_clustering)
#enrichment <- enrich_module(Kmeans_cluster_Ens, org.Hs.eg.db, 'KEGG')
#plot_intramodular_network(TFs_list,enrichment,layout = 'random')

jiang-junyao/IReNA documentation built on Nov. 4, 2024, 8:29 p.m.