Cacoa | R Documentation |
The class encompasses etc etc
n.cores
Number of cores (default=1)
verbose
boolean Whether to provide verbose output with diagnostic messages (default=FALSE)
test.results
list Results of the estimations, ready to use (default=list())
cache
list Intermediate results of the estimations, which can be used during some other computations (default=list())
data.object
list The main object storing data (Conos or Seurat) (default=list())
sample.groups
2-factor vector with annotation of groups/condition per sample (default=NULL)
cell.groups
Named factor with cell names with cluster per cell (default=NULL)
embedding
2D embedding to visualize the cells in (default=NULL)
sample.per.cell
Named factor with cell names (default=NULL)
ref.level
Reference level for sample.group vector (default=NULL)
target.level
Target/disease level for sample.group vector
sample.groups.palette
Color palette for the sample.groups (default=NULL)
cell.groups.palette
Color palette for the cell.groups (default=NULL)
plot.theme
ggplot2 theme for all plots (default=NULL)
plot.params
list with parameters, forwarded to all plotEmbedding
calls (default=NULL)
new()
Initialize Cacoa class
Cacoa$new( data.object, sample.groups = NULL, cell.groups = NULL, sample.per.cell = NULL, ref.level = NULL, target.level = NULL, sample.groups.palette = NULL, cell.groups.palette = NULL, embedding = NULL, graph.name = NULL, assay.name = "RNA", n.cores = 1, verbose = TRUE, plot.theme = ggplot2::theme_bw(), plot.params = NULL )
data.object
Object used to initialize the Cacoa class. Either a raw or normalized count matrix, Conos object, or Seurat object.
sample.groups
a two-level factor on the sample names describing the conditions being compared (default: extracted from data.object
)
cell.groups
vector Indicates cell groups with cell names (default: extracted from data.object
)
sample.per.cell
vector Sample name per cell (default: extracted from data.object
)
ref.level
reference sample group level
target.level
target sample group level
sample.groups.palette
Color palette for the sample.groups (default=NULL)
cell.groups.palette
Color palette for the cell.groups (default=NULL)
embedding
embedding 2D embedding to visualize the cells in (default: extracted from data.object
)
graph.name
graph name for Seurat object, ignored otherwise (default=NULL)
assay.name
assay name for Seurat object, ignored otherwise (default="RNA")
n.cores
Number of cores for parallelization (default=1)
verbose
boolean Whether to provide verbose output with diagnostic messages (default=TRUE)
plot.theme
ggplot2 plot theme (default=ggplot2::theme_bw())
plot.params
list with parameters, replacing defaults from embeddingPlot (default=NULL)
a new 'Cacoa' object
# Is it highly recommended that sample.groups and cell.groups are assigned in the initialization call. # Here, "con" is a Conos object. \dontrun{ sample.groups <- c("control","control","disease","disease") names(sample.groups) <- names(con$samples) } # cell.groups should be a named factor where names are cell names corresponding to cell names in the data object. # For Conos objects, they should overlap with rownames(con$embedding) \dontrun{ cell.groups <- my.named.annotation.factor cao <- Cacoa$new(data.object = con, sample.groups = sample.groups, cell.groups = ref.level = "control", target.level = "disease") }
estimateExpressionShiftMagnitudes()
Calculate expression shift magnitudes of different clusters between conditions
Cacoa$estimateExpressionShiftMagnitudes( cell.groups = self$cell.groups, sample.per.cell = self$sample.per.cell, dist = NULL, dist.type = "shift", min.cells.per.sample = 10, min.samp.per.type = 2, min.gene.frac = 0.01, ref.level = self$ref.level, sample.groups = self$sample.groups, verbose = self$verbose, n.cores = self$n.cores, name = "expression.shifts", n.permutations = 1000, genes = NULL, n.pcs = NULL, top.n.genes = NULL, ... )
cell.groups
vector Indicates cell groups with cell IDs as names (default: stored vector)
sample.per.cell
Sample per cell (default=self$sample.per.cell)
dist
distance metric: 'cor' - correlation distance, 'l1' - manhattan distance or 'l2' - euclidean (default=NULL, depends on dimensionality)
dist.type
type of expression distance: 'shift' (linear shift) 'var' (variance change) or 'total' (both) (default="shift")
min.cells.per.sample
numeric minimum cells per sample (default=10)
min.samp.per.type
numeric minimal number of samples per cell type for it to be included (default=2)
min.gene.frac
numeric minimal number of cells per cell type expressing a gene for it to be included (default=0.01)
ref.level
character Reference level, e.g. "control" (default=self$ref.level)
sample.groups
named vector indicating sample groups with sample IDs as names (default: stored sample.groups)
verbose
boolean Whether to show progress
n.cores
integer Number of cores for parallelization (default: stored integer)
name
character Test name (default="expression.shifts")
n.permutations
numeric number of permutations for estimating normalization coefficient (default=1000)
genes
character if provided, the expression distance is estimated only based on these genes (default=NULL)
n.pcs
numeric Number of principal components for estimating expression distance (default=NULL, no PCA)
top.n.genes
character vector Vector of top genes to show (default=NULL)
...
extra parameters to estimateExpressionChange
List including:
dist.df
: a table with cluster distances (normalized if within.group.normalization=TRUE), cell type and the number of cells # TODO: update
p.dist.info
: list of distance matrices per cell type
sample.groups
: filtered sample groups
cell.groups
: filtered cell groups
\dontrun{ cao$estimateExpressionShiftMagnitudes() }
plotExpressionShiftMagnitudes()
Plot results from cao$estimateExpressionShiftMagnitudes() (shift.type="normal") or cao$estimateCommonExpressionShiftMagnitudes() (shift.type="common")
Cacoa$plotExpressionShiftMagnitudes( name = "expression.shifts", type = "box", notch = TRUE, show.jitter = TRUE, jitter.alpha = 0.05, show.pvalues = c("adjusted", "raw", "none"), ylab = "normalized expression distance", ... )
name
character Results slot name (default="expression.shifts")
type
character type of a plot "bar" or "box" (default="bar")
notch
boolean Whether to show notches in the boxplot version (default=TRUE)
show.jitter
boolean Whether to show individual data points (default=FALSE)
jitter.alpha
numeric Transparency value for the data points (default=0.05)
show.pvalues
character string Which p-values to plot. Accepted values are "none", "raw", or "adjusted". (default=c("adjusted", "raw", "none"))
ylab
character string Label of the y-axis (default="normalized expression distance")
...
additional arguments
A ggplot2 object
\dontrun{ cao$estimateExpressionShiftMagnitudes() cao$plotExpressionShiftMagnitudes() }
estimatePerCellTypeDE()
Alias for estimateDEPerCellType
Cacoa$estimatePerCellTypeDE(...)
...
parameters fed to estimateDEPerCellType
A list of DE genes
\dontrun{ cao$estimatePerCellTypeDE() # Deprecated }
estimateDEPerCellType()
Estimate differential gene expression per cell type between conditions
Cacoa$estimateDEPerCellType( cell.groups = self$cell.groups, sample.groups = self$sample.groups, ref.level = self$ref.level, target.level = self$target.level, name = "de", test = "DESeq2.Wald", resampling.method = NULL, n.resamplings = 30, seed.resampling = 239, min.cell.frac = 0.05, covariates = NULL, common.genes = FALSE, n.cores = self$n.cores, cooks.cutoff = FALSE, independent.filtering = FALSE, min.cell.count = 10, n.cells.subsample = NULL, verbose = self$verbose, fix.n.samples = NULL, genes.to.omit = NULL, ... )
cell.groups
factor specifying cell types (default=self$cell.groups)
sample.groups
2-factor vector with annotation of groups/condition per sample (default=self$sample.groups)
ref.level
character Reference level in 'sample.groups', e.g., ctrl, healthy (default=self$ref.level)
target.level
character Target level in 'sample.groups', e.g., case, diseased (default=self$target.level)
name
character string Slot in which to save the results (default='de')
test
character string Which DESeq2 test to use. The available options are "LRT", "Wald". (default="DESeq2.Wald")
resampling.method
character which resampling method should be used "loo" for leave-one-out or "bootstrap", (default=NULL, i.e. no resampling)
n.resamplings
numeric Number of resamplings to perform (default=30)
seed.resampling
numeric Seed to use for resamplings, input to set.seed() (default=239)
min.cell.frac
numeric Minimum fraction of cells to use to perform DE (default=0.05)
covariates
(default=NULL)
common.genes
boolean Whether to investigate common genes across cell groups (default=FALSE)
n.cores
numeric Number of cores for parallelization
cooks.cutoff
boolean cooksCutoff for DESeq2 (default=FALSE)
independent.filtering
boolean independentFiltering parameter for DESeq2 (default=FALSE)
min.cell.count
numeric minimum number of cells that need to be present in a given cell type in a given sample in order to be taken into account (default=10)
n.cells.subsample
integer Number of cells to subsample (default=NULL)
verbose
boolean Whether to show progress
fix.n.samples
Samples to be provided if resampling.method='fix.samples'.
genes.to.omit
character Genes to omit from calculations (default = NULL)
...
additional parameters
A list of DE genes
\dontrun{ cao$estimateDEPerCellType() }
estimateDEStabilityPerCellType()
Estimate DE stability per cell type
Cacoa$estimateDEStabilityPerCellType( de.name = "de", name = "de.jaccards", top.n.genes = NULL, p.val.cutoff = NULL )
de.name
character string DE results slot name (default='de')
name
character string Name for storing results (default='de.jaccards')
top.n.genes
numeric Number of top DE genes to return (default=NULL)
p.val.cutoff
numeric The p-value cutoff to apply for returned DE values (default=NULL)
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateDEStabilityPerCellType() }
estimateDEStabilityPerGene()
Estimate DE stability per gene
Cacoa$estimateDEStabilityPerGene( de.name = "de", top.n.genes = 500, p.adj.cutoff = NULL, visualize = FALSE )
de.name
character string DE results slot name (default='de')
top.n.genes
numeric Number of top DE genes to return (default=500)
p.adj.cutoff
numeric The adjusted p-value cutoff to apply for returned DE values (default=NULL)
visualize
boolean Whether to visualize results (default=FALSE)
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateDEStabilityPerGene() }
plotDEStabilityPerCellType()
Plot DE stability per cell type
Cacoa$plotDEStabilityPerCellType( name = "de.jaccards", notch = FALSE, show.jitter = TRUE, jitter.alpha = 0.05, show.pairs = FALSE, sort.order = TRUE, pallete = self$cell.groups.palette, set.fill = TRUE )
name
character string DE stability results slot name (default='de.jaccards')
notch
boolean Whether to show notches on plot (default=FALSE)
show.jitter
boolean Whether to show jitter on plots (default=TRUE)
jitter.alpha
numeric Parameter for jitter (default=0.05)
show.pairs
boolean Whether to show pairs (default=FALSE)
sort.order
boolean Whether to show notches in the boxplot version (default=TRUE)
pallete
plot palette (default=self$cell.groups.palette)
set.fill
(default=TRUE)
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateDEStability() cao$plotDEStabilityPerCellType) }
plotDEStabilityPerGene()
Plot DE stability per gene
Cacoa$plotDEStabilityPerGene( name = "de", cell.type = NULL, stability.score = "stab.median.rank" )
name
character string DE results slot name (default='de')
cell.type
character If set only show stability for a specific cell type in DE results (default=NULL)
stability.score
character string Any of "stab.median.rank", "stab.mean.rank", or "stab.var.rank" (default='stab.median.rank')
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateDEStabilityPerGene() cao$plotDEStabilityPerGene() }
plotNumberOfDEGenes()
Plot number of significant DE genes
Cacoa$plotNumberOfDEGenes( name = "de", p.adjust = TRUE, pvalue.cutoff = 0.05, show.resampling.results = TRUE, show.jitter = FALSE, jitter.alpha = 0.05, type = "bar", notch = TRUE, ... )
name
string Field name where the test results are stored
p.adjust
boolean Whether the cutoff should be based on the adjusted P value (default=TRUE)
pvalue.cutoff
numeric P-value cutoff (default=0.05)
show.resampling.results
boolean Whether to show uncertainty based on resampling results (default=TRUE)
show.jitter
boolean Whether to apply jitter to the ggplot (default=FALSE)
jitter.alpha
numeric Opacity setting (default=0.05)
type
character string Any of 'box', 'point', or 'bar' (default='bar')
notch
boolean Whether to show notches (default=TRUE)
...
additional parameters passed to plotMeanMedValuesPerCellType()
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$plotNumberOfDEGenes() }
plotVolcano()
Make volcano plots
Cacoa$plotVolcano( name = "de", cell.types = NULL, palette = NULL, build.panel = TRUE, n.col = 3, color.var = "CellFrac", ... )
name
character string DE results slot name (default='de')
cell.types
character If set will plot only for selected cell types in DE results (default=NULL)
palette
plot palette If NULL will use standard palette (default=NULL)
build.panel
boolean (default=TRUE)
n.col
numeric Number of columns (default=3)
color.var
character string (default='CellFrac')
...
additional parameters fed to plotVolcano
A ggplot2 object ## Not run: cao$estimateDEPerCellType() cao$plotVolcano() ## End(Not run)
saveDeAsJson()
Save DE results as JSON files
Cacoa$saveDeAsJson( saveprefix = NULL, dir.name = "JSON", de.raw = NULL, sample.groups = self$sample.groups, de.name = "de", ref.level = self$ref.level, gene.metadata = NULL, verbose = self$verbose )
saveprefix
character Prefix for created files (default=NULL)
dir.name
character Name for directory with results (default="JSON")
de.raw
List of DE results. If NULL will use stored DE results defined by "de.name" (default=NULL)
sample.groups
a two-level factor on the sample names describing the conditions being compared (default: stored vector)
de.name
character string DE results slot name (default='de')
ref.level
character Reference level in 'sample.groups', e.g., ctrl, healthy, wt (default=NULL)
gene.metadata
(default=NULL)
verbose
boolean Whether to output verbose messages (default=self$verbose)
saved JSON objects
\dontrun{ cao$estimateDEPerCellType() cao$saveDeAsJson() }
plotEmbedding()
Plot embedding
Cacoa$plotEmbedding( embedding = self$embedding, color.by = NULL, plot.theme = self$plot.theme, ... )
embedding
A cell embedding to use (two-column data frame with rownames corresponding to cells) (default: stored embedding object)
color.by
color cells by 'cell.groups', 'condition' or 'sample'. Overrides groups
and palette
. (default: NULL)
plot.theme
plot theme to use (default: self$plot.theme
)
...
other parameters passed to embeddingPlot
embedding plot as output by sccore::embeddingPlot
\dontrun{ cao$plotEmbedding() }
estimateOntology()
Estimate ontology terms based on DEs
Cacoa$estimateOntology( type = c("GO", "DO", "GSEA"), name = NULL, de.name = "de", org.db, n.top.genes = 500, p.adj = 1, p.adjust.method = "BH", readable = TRUE, min.gs.size = 10, max.gs.size = 500, keep.gene.sets = FALSE, ignore.cache = NULL, de.raw = NULL, verbose = self$verbose, n.cores = self$n.cores, ... )
type
character Ontology type, either GO (gene ontology) or DO (disease ontology). Please see DOSE package for more information (default="GO")
name
character If NULL will use type
to look for ontology results (default=NULL)
de.name
character string DE results slot name (default='de')
org.db
Organism database, e.g., org.Hs.eg.db::org.Hs.eg.db for human or org.Ms.eg.db::org.Ms.eg.db for mouse. Input must be of class 'OrgDb'
n.top.genes
numeric Number of top highest-expressed genes to consider (default=500)
p.adj
numeric adjust-pvalues cutoff fed to getDEEntrezIdsSplitted() (default: 1)
p.adjust.method
character string Method for calculating adjusted p-values (default="BH")
readable
boolean Mapping gene ID to gene name (default=TRUE)
min.gs.size
numeric Minimal geneset size, please see clusterProfiler package for more information (default=5)
max.gs.size
numeric Minimal geneset size, please see clusterProfiler package for more information (default=5e2)
keep.gene.sets
boolean (default=FALSE)
ignore.cache
(default=NULL)
de.raw
(default=NULL)
verbose
boolean Whether to show progress
n.cores
numeric Number of cores for parallelization
...
further argument for ontology estimation. Pass nPerm
with type='GSEA'
to use fgseaSimple method
min.genes
numeric Minimum number of input genes overlapping with ontologies (default=0)
qvalue.cutoff
numeric Q value cutoff, please see clusterProfiler package for more information (default=0.2)
A list containing a list of terms per ontology, and a data frame with merged results
\dontrun{ cao$estimateDEPerCellType() library(org.Hs.eg.db) cao$estimateOntology(type = "GSEA", org.db = org.Hs.eg.db) }
estimateOntologyFamilies()
Estimate ontology families based on ontology results
Cacoa$estimateOntologyFamilies(name = "GO", p.adj = 0.05)
name
character Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
p.adj
double Cutoff for adjusted p (default=0.05)
List of families and ontology data per cell type
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$estimateOntologyFamilies(name = "GSEA") }
getFamiliesPerGO()
Identify families containing a specific ontology term or ID
Cacoa$getFamiliesPerGO( name = "GO", go.term = NULL, go.id = NULL, common = FALSE )
name
character string Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
go.term
character vector with term description(s) (default=NULL)
go.id
character vector with ID(s) (default=NULL)
common
boolean Only identify families with all the supplied terms or IDs (default = FALSE)
Data frame
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$estimateOntologyFamilies(name = "GSEA") cao$getFamiliesPerGO(name = "GSEA", go.term = "antigen presentation") # Either go.term og go.id has to be specified }
plotNumOntologyTermsPerType()
Bar plot of ontology terms per cell type
Cacoa$plotNumOntologyTermsPerType( name = "GO", genes = "up", p.adj = 0.05, q.value = 0.2, min.genes = 1, families = FALSE )
name
character string Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
genes
Specify which genes to plot, can either be 'down', 'up' or 'all' (default="up")
p.adj
numeric adjusted p-value cutoff (default=0.05)
q.value
numeric Q value used for filtering (default=0.2)
min.genes
integer Minimum number of overlapping genes in terms (default=1)
families
boolean Plot family terms (default=FALSE)
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$plotNumOntologyTermsPerType() }
plotOntology()
Plot a dotplot of ontology terms with adj. P values for a specific cell subgroup
Cacoa$plotOntology( cell.type, name = "GO", plot = "dot", genes = c("up", "down", "all"), subtype = c("BP", "CC", "MF"), n = 20, p.adj = 0.05, min.genes = 1, ... )
cell.type
character string Cell type to plot
name
character string Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
plot
character string Type of plot to return (default="dot"). Either "dot" or "bar".
genes
Specify which genes to plot, can either be 'down', 'up' or 'all' (default="up")
subtype
character string Ontology type, must be either "BP", "CC", or "MF" (GO types), "GO" or "DO" (default="GO")
n
integer Number of ontology terms to show. Not applicable when order is 'unique' or 'unique-max-row' (default=10)
p.adj
numeric Adjusted P cutoff (default=0.05)
min.genes
integer Minimum overlapping genes per term (default=1)
...
additional parameters passed to enrichplot::dotplot() or enrichplot::barplot()
cell.subgroup
character Specific cell group to plot
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$plotOntology(name = "GSEA", cell.type = "Neurons") # "cell.type" is a cell type in self$cell.groups used for calculating ontologies }
plotOntologyHeatmap()
Plot a heatmap of ontology P values per cell type
Cacoa$plotOntologyHeatmap( name = "GO", genes = "up", subtype = "BP", p.adj = 0.05, q.value = 0.2, min.genes = 1, top.n = Inf, legend.position = "left", selection = "all", cluster = TRUE, cell.subgroups = NULL, row.order = TRUE, col.order = TRUE, max.log.p = 10, only.family.children = FALSE, description.regex = NULL, description.exclude.regex = NULL, clust.naming = "medoid", readjust.p = TRUE, p.adjust.method = "BH", palette = NULL, color.range = NULL, return.info = FALSE, ... )
name
string Field name where the test results are stored
genes
Specify which genes to plot, can either be 'down' for downregulated genes, 'up' or 'all' (default="up")
subtype
character string (default="BP")
p.adj
numeric Cut-off for adjusted p-values (default=0.05)
q.value
numeric (default=0.2)
min.genes
integer Minimum genes (default=1)
top.n
Number of terms to show (default=Inf)
legend.position
Position of legend in plot. See ggplot2::theme (default="left")
selection
Order of rows in heatmap. Can be 'unique' (only show terms that are unique for any cell type); 'common' (only show terms that are present in at least two cell types); 'all' (all ontology terms) (default="all")
cluster
boolean Whether to show GO clusters or raw GOs (default=TRUE)
cell.subgroups
Cell groups to plot (default=NULL). This affects only visualization, but not clustering.
row.order
boolean Whether to order rows (default=TRUE)
col.order
boolean Whether to order columns (default=TRUE)
max.log.p
numeric Maximum log P value, used for coloring (default=10)
only.family.children
boolean Whether to only include family children (default=FALSE)
description.regex
(default=NULL)
description.exclude.regex
(default=NULL)
clust.naming
Field with the results for GO clustering. Ignored if clusters == FALSE
.
readjust.p
boolean Whether to re-adjust p-values (default=TRUE)
p.adjust.method
character string Method used to adjust p-values (default="BH")
palette
plot palette. If NULL default will be used (default=NULL)
color.range
vector with two values for min/max values of p-values
return.info
boolean (default=FALSE)
...
parameters forwarded to plotHeatmap
type
Ontology, must be either "BP", "CC", or "MF" (GO types) or "DO" (default="GO")
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$plotOntologyHeatmap() cao$estimateOntologyFamilies(name = "GSEA") cao$plotOntologyHeatmap(name = "GSEA", only.family.children = TRUE) }
plotOntologyHeatmapCollapsed()
Plot a heatmap of ontology p-values per cell type heatmap, collapsed
Cacoa$plotOntologyHeatmapCollapsed( name = "GO", genes = "up", subtype = "BP", p.adj = 0.05, q.value = 0.2, min.genes = 1, n = 20, legend.position = "left", selection = "all", max.log.p = 10, cluster = TRUE, cell.subgroups = NULL, palette = NULL, row.order = TRUE, col.order = TRUE, only.family.children = FALSE, readjust.p = TRUE, p.adjust.method = "BH", description.regex = NULL, description.exclude.regex = NULL, distance = "manhattan", clust.method = "complete", clust.naming = "consensus", n.words = 5, exclude.words = NULL, return.info = FALSE, ... )
name
character string Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
genes
character Specify which genes to plot, can either be 'down' for downregulated genes, 'up' or 'all' (default="up")
subtype
character Ontology type, must be either "BP", "CC", or "MF" (GO types) or "DO" (default="GO")
p.adj
numeric Adj. P value cutoff (default=0.05)
q.value
numeric Q value cutoff (default=0.2)
min.genes
integer Minimum number of overlapping genes per term (default=1)
n
integer Number of terms to plot (default=20)
legend.position
character Position of legend in plot. See ggplot2::theme (default="left")
selection
character Order of rows in heatmap. Can be 'unique' (only show terms that are unique for any cell type); 'common' (only show terms that are present in at least two cell types); 'all' (all ontology terms) (default="all")
max.log.p
numeric Maximum log P value, used for coloring (default=10)
cluster
Whether to show GO clusters or raw GOs (default=TRUE)
cell.subgroups
Cell groups to plot (default=NULL). This affects only visualization, but not clustering.
palette
(default=NULL)
row.order
boolean Whether to order rows (default=TRUE)
col.order
boolean Whether to order columns (default=TRUE)
only.family.children
boolean (default=FALSE)
readjust.p
boolean Whether to re-adjust p-values (default=TRUE)
p.adjust.method
character string Method for calculating adjusted p-values (default="BH")
description.regex
(default=NULL)
description.exclude.regex
(default=NULL)
distance
character string (default="manhattan")
clust.method
character string (default="complete")
clust.naming
Field with the results for GO clustering. Ignored if clusters == FALSE
.
n.words
integer (default=5)
exclude.words
(default=NULL)
return.info
boolean Whether to return the info (default=FALSE)
...
parameters forwarded to plotHeatmap
top.n
Number of terms to show (default=Inf)
color.range
vector with two values for min/max values of p-values
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$plotOntologyHeatmapCollapsed(name = "GSEA") cao$estimateOntologyFamilies(name = "GSEA") cao$plotOntologyHeatmapCollapsed(name = "GSEA", only.family.children = TRUE) }
plotOntologySimilarities()
Plot correlation matrix for ontology terms between cell types
Cacoa$plotOntologySimilarities( name = "GO", subtype = c("BP", "MF", "CC"), genes = "up", p.adj = 0.05, only.family.children = FALSE, q.value = 0.2, min.genes = 1 )
name
character string Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
subtype
character Type of ontology result, must be "BP", "MF", or "CC" (default="BP")
genes
Specify which genes to plot, can either be 'down', 'up' or 'all' (default="up")
p.adj
numeric Cut-off for adjusted p-values (default=0.05)
only.family.children
boolean Plot similarities for ontology family lonely children (default=FALSE)
q.value
numeric Q value for filtering (default=0.2)
min.genes
numeric Minimum number of overlapping genes per term (default=1)
A ggplot2 object
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology() cao$plotOntologySimilarities() }
plotOntologyFamily()
Plot related ontologies in one hierarchical network plot
Cacoa$plotOntologyFamily( name = "GO", cell.type, family = NULL, genes = "up", subtype = "BP", plot.type = c("complete", "dense", "minimal"), show.ids = FALSE, string.length = 14, legend.label.size = 1, legend.position = "topright", verbose = self$verbose, n.cores = self$n.cores, ... )
name
character string Type of ontology result: "GO", "GSEA", or "DO" (default="GO")
cell.type
character Cell subtype to plot
family
numeric Family within cell subtype to plot (default=NULL)
genes
character string Only for GO results: Direction of genes, must be "up", "down", or "all" (default="up")
subtype
character Type of ontology result, must be "BP", "MF", or "CC" (default="BP")
plot.type
character Extend of family network Can be "complete" (entire network), "dense" (show 1 parent for each significant term), or "minimal" (only show significant terms) (default="complete")
show.ids
boolean Whether to show ontology IDs instead of names (default=FALSE)
string.length
integer Length of strings for wrapping in order to fit text within boxes (default: 14)
legend.label.size
numeric Size og legend labels (default: 1)
legend.position
numeric Position of legend (default: topright)
verbose
boolean Print messages (default=self$verbose)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
...
additional parameters passed to plotOntologyFamily
Rgraphviz object
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$estimateOntologyFamilies(name = "GSEA") cao$plotOntologyFamily(name = "GSEA", cell.type = "Neurons") # "cell.type" is a cell type in self$cell.groups used for calculating ontologies }
saveOntologyAsTable()
Save ontology results as a table
Cacoa$saveOntologyAsTable( file, name = "GO", subtype = NULL, genes = NULL, p.adj = 0.05, sep = "\t", ... )
file
character string File name passed to write.table(). Set to NULL to return the table instead of saving.
name
string Field name where the test results are stored
subtype
character string Only for GO results: Type of result to filter by, must be "BP", "MF", or "CC" (default: NULL)
genes
character Direction of genes to filter by, must be "up", "down", or "all" (default: NULL)
p.adj
numeric Cut-off for adjusted p-values (default=0.05)
sep
character Separator (default: "\t", tab)
...
additional arguments passed to write.table()
table for import into text editor
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$saveOntologyAsTable(name = "GSEA", file = "Ontologies.tsv") }
saveFamiliesAsTable()
Save family results as a table
Cacoa$saveFamiliesAsTable( file, name = "GO", subtype = NULL, genes = NULL, p.adj = 0.05, sep = "\t", ... )
file
character string File name passed to write.table(). Set to NULL to return the table instead of saving.
name
string Field name where the test results are stored
subtype
character Type of result to filter by, must be "BP", "MF", or "CC" (default=NULL)
genes
character Direction of genes to filter by, must be "up", "down", or "all" (default=NULL)
p.adj
numeric Adjusted P to filter by (default=0.05)
sep
character Separator (default = "\t", tab)
...
additional arguments passed to write.table()
type
character string Type of ontology result, i.e., GO, GSEA, or DO (default='GO')
table for import into text editor
\dontrun{ cao$estimateDEPerCellType() cao$estimateOntology(name = "GSEA") cao$estimateOntologyFamilies(name = "GSEA") cao$saveFamiliesAsTable(name = "GSEA", file = "Families.tsv") }
plotCellGroupSizes()
Plot the cell group sizes or proportions per sample
Cacoa$plotCellGroupSizes( cell.groups = self$cell.groups, show.significance = FALSE, filter.empty.cell.types = TRUE, proportions = TRUE, palette = self$sample.groups.palette, ... )
cell.groups
factor Cell annotations with cell IDs as names (default=self$cell.groups)
show.significance
boolean show statistical significance between sample groups. wilcox.test was used; (*
< 0.05; **
< 0.01; ***
< 0.001) (default=FALSE)
filter.empty.cell.types
boolean Remove cell types without cells (default=TRUE)
proportions
boolean Plot proportions or absolute numbers (default=TRUE)
palette
color palette to use for conditions (default: stored $sample.groups.palette)
...
additional plot parameters, forwarded to plotCountBoxplotsPerType
A ggplot2 object
\dontrun{ cao$plotCellGroupSizes() }
plotCellGroupAbundanceVariation()
Plot the cell group sizes or proportions per sample
Cacoa$plotCellGroupAbundanceVariation( cell.groups = self$cell.groups, type = "mad", rotate.xticks = TRUE, min.rel.abundance = 0.05 )
cell.groups
character Cell annotations with cell IDs as names(default=self$cell.groups)
type
character string Must be "mad", "sd", "sample.num", or "sample.frac" (default='mad')
rotate.xticks
boolean Turn x labels 90 degrees (default=TRUE)
min.rel.abundance
numeric Minimum relative abundance to plot (default=0.05)
ggplot2 object
\dontrun{ cao$plotCellGroupAbundanceVariation() }
plotCodaSpace()
Plot compositions in CoDA space (PCA or CDA)
Cacoa$plotCodaSpace( space = "CDA", cell.groups = self$cell.groups, font.size = 3, cells.to.remain = NULL, cells.to.remove = NULL, samples.to.remove = NULL, palette = self$sample.groups.palette )
space
character either 'PCA' or 'CDA' (default="CDA")
cell.groups
vector Indicates cell groups with cell IDs as names (default: stored vector)
font.size
numeric Font size (default=3)
cells.to.remain
character Specific cell types to keep (default=NULL)
cells.to.remove
character Specific cell types to remove (default=NULL)
samples.to.remove
character Specific samples to remove (default=NULL)
palette
plot palette (default=self$sample.groups.palette)
A ggplot2 object
\dontrun{ cao$estimateCellLoadings() cao$plotCodaSpace() }
plotContrastTree()
Plot contrast tree
Cacoa$plotContrastTree( cell.groups = self$cell.groups, palette = self$sample.groups.palette, name = "coda", cells.to.remain = NULL, cells.to.remove = NULL, filter.empty.cell.types = TRUE, adjust.pvalues = TRUE, h.method = c("both", "up", "down"), reorder.tree = TRUE, ... )
cell.groups
character Cell annotations with cell IDs as name (default=self$cell.groups)
palette
plot palette (default=self$sample.groups.palette)
name
character Results name slot (default='coda')
cells.to.remain
character Specific cell types to keep (default=NULL)
cells.to.remove
character Specific cell types to remove (default=NULL)
filter.empty.cell.types
boolean Remove cell types without cells (default=TRUE)
adjust.pvalues
boolean Adjust P values or not (default=TRUE)
h.method
character Must be one of 'both', 'up', 'down' (default='both')
reorder.tree
boolean Reorder tree or not (default=TRUE)
...
additional parameters
A ggplot2 object
\dontrun{ cao$estimateCellLoadings() cao$plotContratsTree() }
plotCompositionSimilarity()
Plot composition similarity
Cacoa$plotCompositionSimilarity( cell.groups = self$cell.groups, cells.to.remain = NULL, cells.to.remove = NULL, palette = brewerPalette("YlOrRd", rev = FALSE), ... )
cell.groups
character Cell annotations with cell IDs as name (default=self$cell.groups)
cells.to.remain
character Specific cell types to keep (default=NULL)
cells.to.remove
character Specific cell types to remove (default=NULL)
palette
plot palette (default=brewerPalette("YlOrRd", rev=FALSE))
...
parameters passed to plotHeatmap()
A ggplot2 object
\dontrun{ cao$estimateCellLoadings() cao$plotCompositionSimilarity() }
estimateCellLoadings()
Estimate cell loadings
Cacoa$estimateCellLoadings( n.boot = 1000, ref.cell.type = NULL, name = "coda", n.seed = 239, cells.to.remove = NULL, cells.to.remain = NULL, samples.to.remove = NULL, filter.empty.cell.types = TRUE, n.cores = self$n.cores, verbose = self$verbose, method = "lda" )
n.boot
numeric Number of boot straps (default=1000)
ref.cell.type
character Reference cell type (default=NULL)
name
character Results name slot (default='coda')
n.seed
numeric Seed number for reproducibility (default=239)
cells.to.remove
character Specific cell types to keep (default=NULL)
cells.to.remain
character Specific cell types to remove (default=NULL)
samples.to.remove
character Specific samples to remove (default=NULL)
filter.empty.cell.types
boolean Remove cell types without cells (default=TRUE)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
verbose
boolean Print messages (default=self$verbose)
method
character One of 'lda', svm', 'cda', or 'cda.std' (default=lda)
resulting cell loadings
\dontrun{ cao$estimateCellLoadings() }
plotCellLoadings()
Plot Loadings
Cacoa$plotCellLoadings( alpha = 0.01, palette = self$cell.groups.palette, font.size = NULL, name = "coda", ordering = "pvalue", show.pvals = TRUE, ... )
alpha
numeric Transparency (default=0.01)
palette
plot palette specification for cell types (default: stored $cell.groups.palette)
font.size
numeric Font size (default=NULL)
name
character Results slot name (default='coda')
ordering
character Must be one of "pvalue", "loadings" (default='pvalue')
show.pvals
boolean Show P values (default=TRUE)
...
additional parameters plotCellLoadings()
A ggplot2 object
\dontrun{ cao$estimateCellLoadings() cao$plotCellLoadings() }
estimateCellDensity()
Estimate cell density in giving embedding
Cacoa$estimateCellDensity( bins = 400, method = "kde", name = "cell.density", beta = 30, estimate.variation = TRUE, sample.groups = self$sample.groups, verbose = self$verbose, n.cores = self$n.cores, bandwidth = 0.05, ... )
bins
numeric Number of bins for density estimation (default=400)
method
character string Density estimation method, graph: graph smooth based density estimation. kde: embedding grid based density estimation. (default: 'kde')
name
string Field name where the test results are stored
beta
numeric Smoothing strength parameter of the heatFilter for graph based cell density (default=30)
estimate.variation
boolean Estimate variation (default=TRUE)
sample.groups
2-factor vector with annotation of groups/condition per sample (default=self$sample.groups)
verbose
boolean Print messages (default=self$verbose)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
bandwidth
numeric KDE bandwidth multiplier (default=0.5). The full bandwidth is estimated by multiplying this value on the difference between 90% and 10% of the corresponding embedding dimension. Set it to NULL to use bandwidth.nrd estimator. (default=0.05)
...
additional arguments
estimated cell densities
\dontrun{ cao$estimateCellDensity() }
plotCellDensity()
Plot cell density depending on the method that was used for estimating cao$test.resulst[[name]]
Cacoa$plotCellDensity( show.grid = TRUE, add.points = TRUE, size = 0.1, show.legend = FALSE, palette = NULL, point.col = "#313695", contours = NULL, contour.color = "black", contour.conf = "10%", name = "cell.density", show.cell.groups = TRUE, cell.groups = self$cell.groups, font.size = c(2, 4), color.range = c(0, "99%"), ... )
show.grid
boolean Whether to show grid (default=TRUE)
add.points
boolean Add points to cell density figure (default=TRUE)
size
numeric Point size (default=0.1)
show.legend
boolean Show legend (default=FALSE)
palette
plot palette (default=NULL)
point.col
character Point color (default='#313695')
contours
character Specify cell types for contour, multiple cell types are also supported (default=NULL)
contour.color
character Color for contour line (default='black')
contour.conf
character Confidence interval of contour (default='10%')
name
character Slot in which to saved results from estimateCellDensity (default='cell.density')
show.cell.groups
boolean Plot cell group names (default=TRUE)
cell.groups
character Cell annotations with cell IDs as name (default=self$cell.groups)
font.size
numeric Font size (default=c(2, 4))
color.range
character Color range (default=c(0, "99%"))
...
plot style parameters forwarded to sccore::styleEmbeddingPlot.
A ggplot2 object
\dontrun{ cao$estimateCellDensity() cao$plotCellDensity() }
plotCellDensityVariation()
Plot cell density variation
Cacoa$plotCellDensityVariation( type = "mad", plot.type = "embedding", name = "cell.density", cutoff = NULL, condition = c("both", "ref", "target"), ... )
type
character Must be one of "mad", "sd", "sample.frac" (default='mad')
plot.type
character Must be one of "hist", "embedding" (default='embedding')
name
character Results slot name (default='cell.density')
cutoff
numeric Score cutoff (default=NULL)
condition
character Must be one of 'both', 'ref', 'target' (default="both")
...
additional arguments
ggplot2 object
\dontrun{ cao$estimateCellDensity(estimate.variation=TRUE) cao$plotCellDensityVariation() }
estimateDiffCellDensity()
Estimate differential cell density
Cacoa$estimateDiffCellDensity( type = "permutation", adjust.pvalues = NULL, name = "cell.density", n.permutations = 400, smooth = TRUE, verbose = self$verbose, n.cores = self$n.cores, ... )
type
character method to calculate differential cell density; permutation, t.test, wilcox or subtract (target subtract ref density);
adjust.pvalues
boolean Whether to adjust Z-scores for multiple comparison using BH method (default: FALSE for type='subtract', TRUE for everything else)
name
character Slot with results from estimateCellDensity. New results will be appended there. (Default: 'cell.density')
n.permutations
numeric Number of permutations (default=400)
smooth
boolean Smooth results (default=TRUE)
verbose
boolean Print messages (default=self$verbose)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
...
additional arguments to the function
estimated differential cell densities
\dontrun{ cao$estimateCellDensity() cao$estimateDiffCellDensity() }
plotDiffCellDensity()
Estimate differential cell density
Cacoa$plotDiffCellDensity( type = NULL, name = "cell.density", size = 0.2, palette = NULL, adjust.pvalues = NULL, contours = NULL, contour.color = "black", contour.conf = "10%", plot.na = FALSE, color.range = NULL, mid.color = "gray95", scale.z.palette = adjust.pvalues, min.z = qnorm(0.9), ... )
type
character method to calculate differential cell density; t.test, wilcox or subtract (target subtract ref density);
name
character Slot with results from estimateCellDensity. New results will be appended there. (Default: 'cell.density')
size
numeric (default=0.2)
palette
color palette, default is c('blue','white','red')
adjust.pvalues
boolean Adjust P values (default=NULL)
contours
character Specify cell types for contour, multiple cell types are also supported (default: NULL)
contour.color
character color for contour line (default: 'black')
contour.conf
character confidence interval of contour (default: '10%')
plot.na
boolean Plot NAs (default=FALSE)
color.range
numeric, e.g. c(0,90) (default=NULL)
mid.color
character Color code for medium value in color range (default='gray95')
scale.z.palette
boolean Scale plot palette for Z scores (default=adjust.pvalues)
min.z
numeric Minimum Z score to plot (default=qnorm(0.9))
...
additional parameters
ggplot2 object
\dontrun{ cao$estimateCellDensity() cao$estimateDiffCellDensity() cao$plotDiffCellDensity() }
plotExpressionDistance()
Plot inter-sample expression distance. The inputs to this function are the results from cao$estimateExpressionShiftMagnitudes()
Cacoa$plotExpressionDistance( name = "expression.shifts", joint = FALSE, palette = self$sample.groups.palette, show.significance = FALSE, ... )
name
character Test results to plot (default=expression.shifts)
joint
boolean Whether to show joint boxplot with the expression distance weighed by the sizes of cell types (default: TRUE), or show distances for each individual cell type
palette
plot palette (default=self$sample.groups.palette)
show.significance
boolean Whether to show statistical significance between sample groups. wilcox.test was used; (*
< 0.05; **
< 0.01; ***
< 0.001)
...
other plot parameters, forwarded to plotCountBoxplotsPerType
A ggplot2 object
\dontrun{ cao$estimateExpressionShiftMagnitudes() cao$plotExpressionDistance() }
getSampleDistanceMatrix()
Plot inter-sample expression distance. The inputs to this function are the results from cao$estimateExpressionShiftMagnitudes()
Cacoa$getSampleDistanceMatrix( space = c("expression.shifts", "coda", "pseudo.bulk"), cell.type = NULL, dist = NULL, name = NULL, verbose = self$verbose, sample.subset = NULL, ... )
space
character One of 'expression.shifts', 'coda', 'pseudo.bulk' (default="expression.shifts")
cell.type
character Cell type reference for distancing (default=NULL)
dist
character Must be one of "cor", "l1" (manhattan), "l2" (euclidian) (default=NULL)
name
character Results slot name (default=NULL)
verbose
boolean Print messages (default=self$verbose)
sample.subset
subset data for analysis only to the given samples
...
additional arguments
sample distance matrix
\dontrun{ cao$getSampleDistanceMatrix() }
plotSampleDistances()
Project samples to 2D space with MDS. Plots results from cao$estimateExpressionShiftMagnitudes() or cao$estimateCellLoadings()
Cacoa$plotSampleDistances( space = "expression.shifts", method = "MDS", dist = NULL, name = NULL, cell.type = NULL, palette = NULL, show.sample.size = FALSE, sample.colors = NULL, color.title = NULL, title = NULL, n.permutations = 2000, show.pvalues = FALSE, sample.subset = NULL, n.cores = self$n.cores, ... )
space
character string "expression.shifts" Results from cao$estimateExpressionShiftMagnitudes(); CDA- cell composition shifts result from cao$estimateCellLoadings(); sudo.bulk- expression distance of sudo bulk
method
character string "MDS"
dist
'cor' - correlation distance, 'l1' - manhattan distance or 'l2' - euclidean (default correlation distance)
name
string Field name where the test results are stored
cell.type
If a name of a cell type is specified, the sample distances will be assessed based on this cell type alone. Otherwise (cell.type=NULL, default), sample distances will be estimated as an average distance across all cell types (weighted by the minimum number of cells of that cell type between any two samples being compared)
palette
a set of colors to use for conditions (default: stored $sample.groups.palette)
show.sample.size
make point size proportional to the log10 of the number of cells per sample (default: FALSE)
sample.colors
(default=NULL)
color.title
(default=NULL)
title
(default=NULL)
n.permutations
numeric (default=2000)
show.pvalues
boolean (default=FALSE)
sample.subset
subset data for analysis only to the given samples
n.cores
numeric Number of cores for parallelization
...
additional parameters passed to plotSampleDistanceMatrix()
A ggplot2 object
\dontrun{ cao$estimateExpressionShiftMagnitudes() cao$plotSampleDistances() }
estimateMetadataSeparation()
Estimate metadata separation using variance on the sample distance graph
Cacoa$estimateMetadataSeparation( sample.meta, space = "expression.shifts", dist = NULL, space.name = NULL, sample.subset = NULL, name = "metadata.separation", n.permutations = 5000, trim = 0.05, k = 20, show.warning = TRUE, verbose = self$verbose, n.cores = self$n.cores, adjust.pvalues = TRUE, p.adjust.method = "BH", pvalue.cutoff = 0.05 )
sample.meta
sample metadata is a list or data.frame with metadata per sample
space
(default="expression shifts")
dist
(default=NULL)
space.name
(default=NULL)
sample.subset
subset data for analysis only to the given samples
name
string Field name where the test results are stored
n.permutations
number permutations for the test (default=5000)
trim
trim distance matrix above the given quantile (default=0.05)
k
if this parameter is supplied, k-NN graph is used for variance estimation, otherwise the function uses a fully-connected graph (default=20)
show.warning
boolean (default=TRUE)
verbose
boolean Print messages (default=self$verbose)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
adjust.pvalues
boolean (default=TRUE)
p.adjust.method
character string Method for calculating adjusted p-values (default="BH")
pvalue.cutoff
numeric (default=0.05)
results
\dontrun{ cao$estimateExpressionShiftMagnitudes() # or estimateCellLoadings() cao$estimateMetadataSeparation(sample.meta = meta.data) # meta.data is a list or data.frame with metadata per sample }
plotMetadataSeparation()
Plot metadata separation
Cacoa$plotMetadataSeparation( name = "metadata.separation", pvalue.y = 0.93, ... )
name
character Name for storage in test.results (default="metadata.separation")
pvalue.y
numeric (default=0.93)
...
additional parameters forwarded to plotMeanMedValuesPerCellType
\dontrun{ cao$estimateExpressionShiftMagnitudes() # or estimateCellLoadings() cao$estimateMetadataSeparation(sample.meta = meta.data) cao$plotMetadataSeparation() }
estimateClusterFreeDE()
Estimate differential expression Z-scores between two conditions per individual cell
Cacoa$estimateClusterFreeDE( n.top.genes = Inf, genes = NULL, max.z = 20, min.expr.frac = 0.01, min.n.samp.per.cond = 2, min.n.obs.per.samp = 2, robust = FALSE, norm.both = TRUE, adjust.pvalues = FALSE, smooth = TRUE, wins = 0.01, n.permutations = 200, lfc.pseudocount = 1e-05, min.edge.weight = 0.6, verbose = self$verbose, n.cores = self$n.cores, name = "cluster.free.de" )
n.top.genes
(default=Inf)
genes
(default=NULL)
max.z
z-score value to winsorize the estimates for reducing impact of outliers. Default: 20.
min.expr.frac
minimal fraction of cell expressing a gene for estimating z-scores for it. Default: 0.001.
min.n.samp.per.cond
minimal number of samples per condition for estimating z-scores (default: 2)
min.n.obs.per.samp
minimal number of cells per samples for estimating z-scores (default: 2)
robust
whether to use median estimates instead of mean. Using median is more robust, but greatly increase the number of zeros in the data, leading to bias towards highly-express genes. (Default: FALSE)
norm.both
boolean (default=TRUE)
adjust.pvalues
boolean (default=FALSE)
smooth
boolean Whether to apply smoothing (default=TRUE)
wins
numeric (default=0.01)
n.permutations
numeric (default=200)
lfc.pseudocount
pseudocount value for estimation of log2(fold-change)
min.edge.weight
numeric (default=0.6)
verbose
boolean Print messages (default=self$verbose)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
name
character string (default='cluster.free.de')
smoooth
boolean (default=TRUE)
list with sparce matrices containing various DE metrics with genes as columns and cells as rows:
z
: DE Z-scores
reference
mean or median expression in reference samples
target
mean or median expression in target samples
lfc
: log2(fold-change) of expression
Cells that have only one condition in their expression neighborhood have NA Z-scores for all genes.
Results are also stored in the cluster.free.de
field.
\dontrun{ cao$estimateClusterFreeDE() }
getMostChangedGenes()
Get most changed genes
Cacoa$getMostChangedGenes( n, method = c("z", "z.adj", "lfc"), min.z = 0.5, min.lfc = 1, max.score = 20, cell.subset = NULL, excluded.genes = NULL, included.genes = NULL, name = "cluster.free.de" )
n
numeric Number of genes to retrieve
method
character Must be one of "z", "z.adj", "lfc" (default="z")
min.z
numeric Minimum Z score (default=0.5)
min.lfc
numeric Minimum log fold change (default=1)
max.score
numeric Maximum Z score (default=20)
cell.subset
character Cells to subset (default=NULL)
excluded.genes
character Genes to exclude (default=NULL)
included.genes
character Genes to include (default=NULL)
name
character Results slot name (default="cluster.free.de")
named numeric with scores and gene symbols as names
\dontrun{ cao$estimateClusterFreeDE() cao$getMostChangedGenes(n = 10) # n can be any number of genes to extract }
estimateClusterFreeExpressionShifts()
Estimate Cluster-free Expression Shift
Cacoa$estimateClusterFreeExpressionShifts( n.top.genes = 3000, gene.selection = "z", name = "cluster.free.expr.shifts", min.n.between = 2, min.n.within = max(min.n.between, 1), min.expr.frac = 0, min.n.obs.per.samp = 3, normalize.both = FALSE, dist = "cor", log.vectors = (dist != "js"), wins = 0.025, genes = NULL, n.permutations = 500, verbose = self$verbose, n.cores = self$n.cores, min.edge.weight = 0, ... )
n.top.genes
number of top genes for the distance estimation (default: 3000)
gene.selection
character string Method to select top genes, "z" selects genes by cluster-free Z-score change, "lfc" uses log2(fold-change) instead, "expression" picks the most expressed genes and "od" picks overdispersed genes. Default: "z".
name
string Field name where the test results are stored
min.n.between
minimal number of pairs between condition for distance estimation (default: 2)
min.n.within
minimal number of pairs within one condition for distance estimation (default: min.n.between
)
min.expr.frac
numeric (default=0.0)
min.n.obs.per.samp
minimal number of cells per sample for using it in distance estimation (default: 3)
normalize.both
whether to normalize results relative to distances within both conditions (TRUE) or only to the control (FALSE)
dist
distance measure. Options: "cor" (correlation), "cosine" or "js" (Jensen–Shannon)
log.vectors
whether to use log10 on the normalized expression before estimating the distance.
In most cases, must be TRUE for "cosine" and "cor" distances and always must be FALSE for "js". (default: dist != 'js'
)
wins
numeric (default=0.025)
genes
character vector Genes to include (default=NULL)
n.permutations
numeric Number of permutations (default=500)
verbose
boolean Print messages (default=self$verbose)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
min.edge.weight
numeric Minimum edge weight (default=0.0)
...
additional parameters passed to estimateClusterFreeExpressionShiftsC()
Vector of cluster-free expression shifts per cell. Values above 1 correspond to difference between conditions.
Results are also stored in the cluster.free.expr.shifts
field.
\dontrun{ cao$estimateClusterFreeDE() cao$estimateClusterFreeExpressionShifts() }
smoothClusterFreeZScores()
Performs graph smoothing of the cluster-free DE Z-scores
Cacoa$smoothClusterFreeZScores( n.top.genes = 1000, smoothing = 20, filter = NULL, z.adj = FALSE, gene.selection = ifelse(z.adj, "z.adj", "z"), excluded.genes = NULL, n.cores = self$n.cores, verbose = self$verbose, name = "cluster.free.de", ... )
n.top.genes
numeric Number of top ranked genes to include (default=1000)
smoothing
beta
parameter of the heatFilter. (default=20)
filter
graph filter function. (default=NULL)
z.adj
boolean Adjust Z scores (default=FALSE)
gene.selection
character Must be one of "z.adj" or "z", default is based on the "z.adj" parameter (default=ifelse(z.adj, "z.adj", "z"))
excluded.genes
List of genes to exclude during estimation. For example, a list of mitochondrial genes.
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
verbose
boolean Print messages (default=self$verbose)
name
character Results slot name (default='cluster.free.de')
...
parameters forwarded to smoothSignalOnGraph
exluded.genes
character Genes to exclude (default=NULL)
Sparse matrix of smoothed Z-scores. Results are also stored in the cluster.free.de$z.smoothed
field.
\dontrun{ cao$estimateClusterFreeDE() cao$smoothClusterFreeZScores() }
estimateGenePrograms()
Estimate Gene Programs based on cluster-free Z-scores
Cacoa$estimateGenePrograms( method = c("pam", "leiden", "fabia"), n.top.genes = Inf, genes = NULL, n.programs = 15, z.adj = FALSE, gene.selection = ifelse(z.adj, "z.adj", "z"), smooth = TRUE, abs.scores = FALSE, name = "gene.programs", cell.subset = NULL, n.cores = self$n.cores, verbose = self$verbose, max.z = 5, min.z = 0.5, min.change.frac = 0.01, de.name = "cluster.free.de", ... )
method
character String Method to use (default=c("pam", "leiden", "fabia"))
n.top.genes
(default=Inf)
genes
(default=NULL)
n.programs
maximal number of gene programs to find (parameter p
for fabia). (default=15)
z.adj
boolean (default=FALSE)
gene.selection
character string Method to select top genes, "z" selects genes by cluster-free Z-score change, "lfc" uses log2(fold-change) instead, "expression" picks the most expressed genes and "od" picks overdispersed genes. Default: "z".
smooth
boolean (default=TRUE)
abs.scores
boolean (default=FALSE)
name
string Field name where the test results are stored
cell.subset
(default=NULL)
n.cores
integer Number of cores to use for parallelization (default=self$n.cores)
verbose
boolean Print messages (default=self$verbose)
max.z
numeric (default=5)
min.z
numeric (default=0.5)
min.change.frac
numeric (default=0.01)
de.name
character string (default="cluster.free.de")
...
keyword arguments forwarded to estimateGenePrograms
a list includes:
fabia
: fabia::Factorization object, result of the
fabia::fabia call
sample.ids
: ids of the subsampled cells used for fabia estimates
scores.exact
: vector of fabia estimates of gene program scores per cell. Estimated only for the
subsampled cells.
scores.approx
: vector of approximate gene program scores, estimated for all cells in the dataset
loadings
: matrix with fabia gene loadings per program
gene.scores
: list of vectors of gene scores per program. Contains only genes, selected for
the program using fabia biclustering.
bi.clusts
fabia biclustering information, result of the fabia::extractBic call
\dontrun{ cao$estimateClusterFreeDE() cao$estimateGenePrograms() }
plotGeneProgramScores()
Plot gene program scores
Cacoa$plotGeneProgramScores( name = "gene.programs", prog.ids = NULL, build.panel = TRUE, nrow = NULL, adj.list = NULL, legend.title = "Score", palette = NULL, min.genes.per.prog = 10, color.range = c("0.5%", "99.5%"), ... )
name
string Field name where the test results are stored
prog.ids
(default=NULL)
build.panel
boolean (default=TRUE)
nrow
(default=NULL)
adj.list
(default=NULL)
legend.title
character string (default="Score")
palette
(default=NULL)
min.genes.per.prog
numeric (default=10)
color.range
(default=c("0.5%", "99.5%"))
...
additional parameters
gene program scores
\dontrun{ cao$estimateClusterFreeDE() cao$estimateGenePrograms() cao$plotGeneProgramScores() }
plotGeneProgramGenes()
Plot gene program genes
Cacoa$plotGeneProgramGenes( program.id, name = "gene.programs", ordering = c("similarity", "loading"), max.genes = 9, build.panel = TRUE, ncol = 3, plots = "z.adj", ... )
program.id
program id
name
string Field name where the test results are stored
ordering
character vector (default=c("similarity", "loading"))
max.genes
integer (default=9)
build.panel
boolean Plot in a grid (default=TRUE)
ncol
numeric Number of columns for build.panel (default=3)
plots
character string (default="z.adj")
...
additional parameters passed to plotGeneExpressionComparison()
plotGeneExpressionComparison
\dontrun{ cao$estimateClusterFreeDE() cao$estimateGenePrograms() cao$plotGeneProgramGenes(program.id = 1) # program.id is any gene program ID in 1:cao$test.results$gene.programs$n.progs }
plotClusterFreeExpressionShifts()
Plot cluster-free expression shift z-scores
Cacoa$plotClusterFreeExpressionShifts( cell.groups = self$cell.groups, smooth = TRUE, plot.na = FALSE, name = "cluster.free.expr.shifts", scale.z.palette = TRUE, min.z = qnorm(0.9), color.range = c("0", "97.5%"), alpha = 0.2, font.size = c(3, 5), adj.list = NULL, palette = brewerPalette("YlOrRd", rev = FALSE), build.panel = TRUE, ... )
cell.groups
Indicates cell groups with cell names. Set to NULL if it shouldn't be shown. (default: stored vector)
smooth
boolean (default=TRUE)
plot.na
boolean (default=FALSE)
name
string Field name where the test results are stored
scale.z.palette
boolean (default=TRUE)
min.z
(default=qnorm(0.9))
color.range
(default=c("0", "97.5%"))
alpha
numeric (default=0.2)
font.size
size range for cell type labels
adj.list
(default=NULL)
palette
(default=brewerPalette("YlOrRd", rev=FALSE))
build.panel
boolean (default=TRUE)
...
parameters forwarded to embeddingPlot
\dontrun{ cao$estimateClusterFreeDE() cao$estimateClusterFreeExpressionShifts() cao$plotClusterFreeExpressionShifts() }
plotMostChangedGenes()
Plot most changed genes
Cacoa$plotMostChangedGenes( n.top.genes, method = "z", min.z = 0.5, min.lfc = 1, max.score = 20, cell.subset = NULL, excluded.genes = NULL, build.panel = TRUE, ncol = 1, ... )
n.top.genes
numeric
method
character string (default='z')
min.z
numeric (default=0.5)
min.lfc
numeric (default=1)
max.score
numeric (default=20)
cell.subset
(default=NULL)
excluded.genes
(default=NULL)
build.panel
boolean Plot in grid (default=TRUE)
ncol
numeric Number of columns for build.panel (default=1)
...
additional parameters input to self$plotGeneExpressionComparison()
plot of the most changed genes via plotGeneExpressionComparison()
\dontrun{ cao$estimateClusterFreeDE() cao$plotMostChangedGenes(n.top.genes = 10) # n.top.genes is any number of genes to plot }
plotGeneExpressionComparison()
Plot gene expression comparison
Cacoa$plotGeneExpressionComparison( genes = NULL, scores = NULL, max.expr = "97.5%", plots = c("z.adj", "z", "expression"), min.z = qnorm(0.9), max.z = 4, max.z.adj = NULL, max.lfc = 3, smoothed = FALSE, gene.palette = dark.red.palette, z.palette = NULL, z.adj.palette = z.palette, lfc.palette = NULL, scale.z.palette = TRUE, plot.na = -1, adj.list = NULL, build.panel = TRUE, nrow = 1, ncol = 1, cell.subset = NULL, groups = NULL, subgroups = NULL, keep.limits = NULL, name = "cluster.free.de", ... )
genes
(default=NULL)
scores
(default=NULL)
max.expr
character string (default="97.5%")
plots
(default=c("z.adj", "z", "expression"))
min.z
(default=qname(0.9))
max.z
numeric (default=4)
max.z.adj
(default=NULL)
max.lfc
numeric (default=3)
smoothed
boolean (default=FALSE)
gene.palette
(default=dark.red.palette)
z.palette
(default=NULL)
z.adj.palette
(default=z.palette)
lfc.palette
(default=NULL)
scale.z.palette
boolean (default=TRUE)
plot.na
(default=-1)
adj.list
(default=NULL)
build.panel
boolean (default=TRUE)
nrow
numeric Number of rows for build.panel (default=1)
ncol
numeric Number of columns for build.panel (default = 1)
cell.subset
(default=NULL)
groups
(default=NULL)
subgroups
(default=NULL)
keep.limits
(default=NULL)
name
string Field name where the test results are stored
...
additional parameters
list
\dontrun{ cao$estimateClusterFreeDE() cao$plotGeneExpressionComparison() }
getConditionPerCell()
Get condition per cell
Cacoa$getConditionPerCell()
conditions per cell
\dontrun{ cao$getConditionPerCell() }
getJointCountMatrix()
Get joint count matrix
Cacoa$getJointCountMatrix(force = FALSE, raw = TRUE)
force
boolean, if TRUE the joint count matrix will be recalculated even though it already exists in self$cache (default=FALSE)
raw
boolean, return raw counts (default=TRUE)
joint count matrix
\dontrun{ cao$getJointCountMatrix() }
getGOEnvironment()
Get GO environment
Cacoa$getGOEnvironment(org.db, verbose = FALSE, ignore.cache = NULL)
org.db
object of class OrgDB from Bioconductor (e.g. org.Hs.eg.db::org.Hs.eg.db)
verbose
boolean, print progress (default=FALSE)
ignore.cache
ignore GO environments already in self$cache (default=NULL)
GO environment
\dontrun{ cao$getGOEnvironment(org.db = org.Hs.eg.db::org.Hs.eg.db) }
clone()
The objects of this class are cloneable with this method.
Cacoa$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------
## Method `Cacoa$new`
## ------------------------------------------------
# Is it highly recommended that sample.groups and cell.groups are assigned in the initialization call.
# Here, "con" is a Conos object.
## Not run:
sample.groups <- c("control","control","disease","disease")
names(sample.groups) <- names(con$samples)
## End(Not run)
# cell.groups should be a named factor where names are cell names corresponding to cell names in the data object.
# For Conos objects, they should overlap with rownames(con$embedding)
## Not run:
cell.groups <- my.named.annotation.factor
cao <- Cacoa$new(data.object = con, sample.groups = sample.groups, cell.groups = ref.level = "control", target.level = "disease")
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateExpressionShiftMagnitudes`
## ------------------------------------------------
## Not run:
cao$estimateExpressionShiftMagnitudes()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotExpressionShiftMagnitudes`
## ------------------------------------------------
## Not run:
cao$estimateExpressionShiftMagnitudes()
cao$plotExpressionShiftMagnitudes()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimatePerCellTypeDE`
## ------------------------------------------------
## Not run:
cao$estimatePerCellTypeDE() # Deprecated
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateDEPerCellType`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateDEStabilityPerCellType`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateDEStabilityPerCellType()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateDEStabilityPerGene`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateDEStabilityPerGene()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotDEStabilityPerCellType`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateDEStability()
cao$plotDEStabilityPerCellType)
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotDEStabilityPerGene`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateDEStabilityPerGene()
cao$plotDEStabilityPerGene()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotNumberOfDEGenes`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$plotNumberOfDEGenes()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$saveDeAsJson`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$saveDeAsJson()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotEmbedding`
## ------------------------------------------------
## Not run:
cao$plotEmbedding()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateOntology`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
library(org.Hs.eg.db)
cao$estimateOntology(type = "GSEA", org.db = org.Hs.eg.db)
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateOntologyFamilies`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$estimateOntologyFamilies(name = "GSEA")
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$getFamiliesPerGO`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$estimateOntologyFamilies(name = "GSEA")
cao$getFamiliesPerGO(name = "GSEA", go.term = "antigen presentation") # Either go.term og go.id has to be specified
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotNumOntologyTermsPerType`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$plotNumOntologyTermsPerType()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotOntology`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$plotOntology(name = "GSEA", cell.type = "Neurons") # "cell.type" is a cell type in self$cell.groups used for calculating ontologies
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotOntologyHeatmap`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$plotOntologyHeatmap()
cao$estimateOntologyFamilies(name = "GSEA")
cao$plotOntologyHeatmap(name = "GSEA", only.family.children = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotOntologyHeatmapCollapsed`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$plotOntologyHeatmapCollapsed(name = "GSEA")
cao$estimateOntologyFamilies(name = "GSEA")
cao$plotOntologyHeatmapCollapsed(name = "GSEA", only.family.children = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotOntologySimilarities`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology()
cao$plotOntologySimilarities()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotOntologyFamily`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$estimateOntologyFamilies(name = "GSEA")
cao$plotOntologyFamily(name = "GSEA", cell.type = "Neurons") # "cell.type" is a cell type in self$cell.groups used for calculating ontologies
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$saveOntologyAsTable`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$saveOntologyAsTable(name = "GSEA", file = "Ontologies.tsv")
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$saveFamiliesAsTable`
## ------------------------------------------------
## Not run:
cao$estimateDEPerCellType()
cao$estimateOntology(name = "GSEA")
cao$estimateOntologyFamilies(name = "GSEA")
cao$saveFamiliesAsTable(name = "GSEA", file = "Families.tsv")
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCellGroupSizes`
## ------------------------------------------------
## Not run:
cao$plotCellGroupSizes()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCellGroupAbundanceVariation`
## ------------------------------------------------
## Not run:
cao$plotCellGroupAbundanceVariation()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCodaSpace`
## ------------------------------------------------
## Not run:
cao$estimateCellLoadings()
cao$plotCodaSpace()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotContrastTree`
## ------------------------------------------------
## Not run:
cao$estimateCellLoadings()
cao$plotContratsTree()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCompositionSimilarity`
## ------------------------------------------------
## Not run:
cao$estimateCellLoadings()
cao$plotCompositionSimilarity()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateCellLoadings`
## ------------------------------------------------
## Not run:
cao$estimateCellLoadings()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCellLoadings`
## ------------------------------------------------
## Not run:
cao$estimateCellLoadings()
cao$plotCellLoadings()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateCellDensity`
## ------------------------------------------------
## Not run:
cao$estimateCellDensity()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCellDensity`
## ------------------------------------------------
## Not run:
cao$estimateCellDensity()
cao$plotCellDensity()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotCellDensityVariation`
## ------------------------------------------------
## Not run:
cao$estimateCellDensity(estimate.variation=TRUE)
cao$plotCellDensityVariation()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateDiffCellDensity`
## ------------------------------------------------
## Not run:
cao$estimateCellDensity()
cao$estimateDiffCellDensity()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotDiffCellDensity`
## ------------------------------------------------
## Not run:
cao$estimateCellDensity()
cao$estimateDiffCellDensity()
cao$plotDiffCellDensity()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotExpressionDistance`
## ------------------------------------------------
## Not run:
cao$estimateExpressionShiftMagnitudes()
cao$plotExpressionDistance()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$getSampleDistanceMatrix`
## ------------------------------------------------
## Not run:
cao$getSampleDistanceMatrix()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotSampleDistances`
## ------------------------------------------------
## Not run:
cao$estimateExpressionShiftMagnitudes()
cao$plotSampleDistances()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateMetadataSeparation`
## ------------------------------------------------
## Not run:
cao$estimateExpressionShiftMagnitudes() # or estimateCellLoadings()
cao$estimateMetadataSeparation(sample.meta = meta.data) # meta.data is a list or data.frame with metadata per sample
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotMetadataSeparation`
## ------------------------------------------------
## Not run:
cao$estimateExpressionShiftMagnitudes() # or estimateCellLoadings()
cao$estimateMetadataSeparation(sample.meta = meta.data)
cao$plotMetadataSeparation()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateClusterFreeDE`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$getMostChangedGenes`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$getMostChangedGenes(n = 10) # n can be any number of genes to extract
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateClusterFreeExpressionShifts`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$estimateClusterFreeExpressionShifts()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$smoothClusterFreeZScores`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$smoothClusterFreeZScores()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$estimateGenePrograms`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$estimateGenePrograms()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotGeneProgramScores`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$estimateGenePrograms()
cao$plotGeneProgramScores()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotGeneProgramGenes`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$estimateGenePrograms()
cao$plotGeneProgramGenes(program.id = 1) # program.id is any gene program ID in 1:cao$test.results$gene.programs$n.progs
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotClusterFreeExpressionShifts`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$estimateClusterFreeExpressionShifts()
cao$plotClusterFreeExpressionShifts()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotMostChangedGenes`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$plotMostChangedGenes(n.top.genes = 10) # n.top.genes is any number of genes to plot
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$plotGeneExpressionComparison`
## ------------------------------------------------
## Not run:
cao$estimateClusterFreeDE()
cao$plotGeneExpressionComparison()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$getConditionPerCell`
## ------------------------------------------------
## Not run:
cao$getConditionPerCell()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$getJointCountMatrix`
## ------------------------------------------------
## Not run:
cao$getJointCountMatrix()
## End(Not run)
## ------------------------------------------------
## Method `Cacoa$getGOEnvironment`
## ------------------------------------------------
## Not run:
cao$getGOEnvironment(org.db = org.Hs.eg.db::org.Hs.eg.db)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.