##### FUNCTIONS FOR PACKAGE #####
### LIBRARY ---------
library(devtools)
library(drc)
library(grid)
library(tidyverse)
library(broom)
library(patchwork)
# FUNCTIONS --------------------------------
# RCBD FUNCTION ======
RCBD_design <- function(blocks_n, treat_n, plot_label = c(treatments, plots), print_plan = TRUE){
# # set number of replications and treatments
#blocks_n <- 6
# treat_n <- 10
#generate treatments
treatments <- c()
for (t in 1:treat_n) {
block <- sample(rep(1:treat_n))
treatments <- append(treatments, block)
}
treatments <- factor(treatments)
# generate plot data frame treatments
x1 <- rep(1:treat_n, each = treat_n)
x2 <- x1 + 1
y1 <- rep(1:treat_n, treat_n)
y2 <- y1 + 1
df <- tibble(x1,x2,y1,y2,treatments)
# generate plot number sequences
seq_test <- seq(from = 100, to = 100*blocks_n, by = 100)
plots <- NULL
for (i in 1:treat_n){
for (block in seq_test){
plots <- append(plots, block+i)
}
plots <- sort(plots)
}
# create experimental tables
experiment_table <- df %>%
top_n(n= treat_n*blocks_n) %>%
mutate(plots = plots,
ID = seq(from = 1, to = treat_n*blocks_n, by = 1)) %>%
select(ID,blocks = x1, plots, treatments)
#save table to workspace
experiment_plan <<- experiment_table
# generate block sequences
blocks <- seq(1:blocks_n)
block_regions_x <- NULL
block_regions_y <- NULL
block_names <- NULL
for (i in blocks) {
block_regions_x <- append(block_regions_x,i+.5)
block_regions_y <- append(block_regions_y, treat_n+1.5)
block_names <- append(block_names, paste("Block ",i, sep = ""))
}
#get block annotation
blocks_ann <- tibble(x1 = block_regions_x, y1 =block_regions_y, block_names)
# generate plot for design
plot_design <- df %>%
mutate(plots = c(experiment_table$plots, rep(NA,nrow(df) - nrow(experiment_table)))) %>%
full_join(blocks_ann) %>%
ggplot(aes(x1,y1)) +
xlim(1,blocks_n + 1) +
ylim(1,treat_n+2) +
geom_rect(mapping=aes(xmin=x1, xmax=x2, ymin=y1, ymax=y2, fill = treatments), alpha = 0.2, color = "black") +
geom_text(aes(x=x1+(x2-x1)/2, y=y1+(y2-y1)/2, label= {{ plot_label }} ), size=4) +
theme_nothing() +
theme(legend.position = "none",
axis.title = element_blank()) +
geom_text(aes(x = x1, y = y1, label = block_names))
# save plot to workspeace
plot_design <<- plot_design
# return table with treatments
if (print_plan == TRUE) {
return(plot_design)
}
}
# FIT DOSE RESPONSE FUNCTION =====
FitDoseResponse <- function(dose, var_name, variable, df,
fit_weibull = FALSE, get_AIC_table = FALSE,
get_summary = FALSE, applyBC = FALSE, remove_outliers = FALSE,
plot_curve = FALSE, survival_model = FALSE) {
# check if grouping variable is a factor
if (is.factor(df[,variable]) == FALSE) {
df$variable <- as.factor(df[,variable])
}
# extract variables
dose <- df[,as.character(dose)]
var_name <- df[,as.character(var_name)]
variable <- df[,as.character(variable)]
# if survival (binomial) analysis is the goal
if (survival_model == TRUE) {
print("Running a survival dose response analysis:")
if (all(sapply(df$var_name, function(x) is.numeric(x) & x %in% c(0,1,NA))) | is.logical(df$var_name)) {
# print message
print("Model saved in the global environment as binomial_model.")
# fit binomial model
binomial_model <<- do.call("drm", list(var_name ~ dose, variable, data= df,
type=("binomial"),
fct=LL.2(names=c("slope", "LD50"))))
if (get_summary == TRUE) {
# print message
print("Saved summary table as binom_model_summary:")
# save model summary
binom_model_summary <<- tidy(binomial_model)
return(binom_model_summary)
}
} else{
stop("Your response variable is not binomial. Make sure your variable is at 0/1 or TRUE/FALSE format.")
}
}
if (survival_model == FALSE) {
# fit models
if (fit_weibull == FALSE) {
# fit log logistics models
#builds a model with three parameters
ll3_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct=LL.3()))
#builds a model with four parameters
ll4_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct=LL.4()))
# builds a model with five parameters
ll5_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct=LL.5()))
# join models into list
models_list <- list(ll3_model = ll3_model,
ll4_model = ll4_model,
ll5_model = ll5_model)
} else{
# fit log logistics models
#builds a model with three parameters
ll3_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct=LL.3()))
#builds a model with four parameters
ll4_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct=LL.4()))
# builds a model with five parameters
ll5_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct=LL.5()))
models_logistic <- list(ll3_model = ll3_model,
ll4_model = ll4_model,
ll5_model = ll5_model)
# build model with weillbul curves
#W1
W13_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct = W1.3()))
W14_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct = W1.4()))
#W2
W23_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct = W2.3()))
W24_model <- do.call("drm", list(var_name ~ dose, variable, data= df,
fct = W2.4()))
# join weibull models into a list
models_weibull <- list(W13_model = W13_model,
W14_model = W14_model,
W23_model = W23_model,
W24_model = W24_model)
# create a list with all modules
models_list <- c(models_logistic, models_weibull)
}
# get better model using AIC and BIC
model_table <- models_list %>%
lapply(FUN=glance) %>%
lapply(FUN=function(x) x[(names(x) %in% c("AIC", "BIC","logLik"))]) %>%
bind_rows(.id = "id") %>%
mutate(model = models_list,
summary = map(model, tidy)) %>%
arrange(AIC, BIC) %>%
mutate(logLik = as.double(logLik))
# get linear regressions for comparison
linFitList <- list(linear = lm(var_name ~ dose, data = df),
quadratic = lm(var_name ~ dose + I(dose * dose), data = df),
cubic = lm(var_name ~ dose + I(dose * dose) + I(dose * dose *
dose), data = df))
linear_table <- linFitList %>%
lapply(FUN=glance) %>%
lapply(FUN=function(x) x[(names(x) %in% c("AIC", "BIC","logLik"))]) %>%
bind_rows(.id = "id") %>%
mutate(model = linFitList,
summary = map(model, tidy)) %>%
arrange(AIC, BIC)
# add to the table
# select best model
selected_model <<- get(model_table[1,]$id)
# print message with the selected model
print(paste("According to AIC and BIC parameters, the model", model_table[1,1]$id, "is the best fit for this data",
"(AIC =", round(model_table[1,]$AIC,2), "BIC =", paste0(round(model_table[1,]$BIC,2), ")")))
# remove outliers
if (remove_outliers == TRUE) {
print("Check for outliers...")
ouliersRemoval(selected_model)
}
# boxCox transformation
if (applyBC == TRUE) {
print("Applying Box-Cox correction...")
applyBoxCox(selected_model)
}
# if user wants to print the AIC table
if (get_AIC_table == TRUE) {
# create a AIC table
AIC_table <<- model_table %>%
full_join(linear_table) %>%
dplyr::select(id:logLik) %>%
arrange(AIC, BIC)
print("Model fit results saved as AIC_table. Table includes linear regressions for comparison.")
}
if (get_summary == TRUE) {
summ_table <<- model_table[1,] %>%
unnest(summary) %>%
dplyr::select(paramater = term, variable = curve, estimate:p.value) %>%
dplyr::mutate(paramater = dplyr::case_when(paramater == "b" ~ "slope",
paramater == "c" ~ "lower",
paramater == "d" ~ "upper",
paramater == "e" ~ "ED50",
TRUE ~ as.character(paramater)))
print("Summary table saved as summ_table:")
return(summ_table)
}
}
}
# function to check for normality =====
normalQQ_plot <- function (model) # argument: vector of numbers
{
# following four lines from base R's qqline()
vec <- residuals(model)
y <- quantile(vec[!is.na(vec)], c(0.25, 0.75))
x <- qnorm(c(0.25, 0.75))
slope <- diff(y)/diff(x)
int <- y[1L] - slope * x[1L]
# data frame for residuals
d <- data.frame(resids = vec)
# calculate shapiro test
Shap_test <- shapiro.test(residuals(model))
Shap_pval <- Shap_test$p.value
# create annotation with the shapiro test
grob <- grobTree(textGrob(paste("Shapiro-wilk test p-value:", round(Shap_pval,4)), x=0.1, y=0.95, hjust=0,
gp=gpar(col="red", fontsize=13, fontface="italic")))
# create plot
ggplot(d, aes(sample = resids)) +
geom_qq_line(size = 1.2) +
stat_qq(color = "#FF6666", size = 2) +
theme_light() +
labs(title = "QQ-plot for normality assumption",
x = "Theoretical Quantiles", y = "Sample Quantiles") +
annotation_custom(grob)
}
# function to check for homogeinety =====
homogTest_plot <- function(dr_model){
# run fligner test - homogeneity
data_model <- data.frame(dr_model$data[c(1,2,4)])
direction <- rep("Lower",nrow(data_model))
direction[data_model$var_name > median(data_model$var_name)] <- "Upper"
data_model$direction <- as.factor(direction)
the.FKtest <- fligner.test(residuals(dr_model), data_model$direction)
FK_pval <- the.FKtest$p.value
# create annotation with the fligner test
grob <- grobTree(textGrob(paste("Fligner test p-value:", round(FK_pval,4)), x=0.1, y=0.95, hjust=0,
gp=gpar(col="red", fontsize=13, fontface="italic")))
# create plot
ggplot(augment(selected_model, data = data_model),
aes(.fitted, .resid)) + geom_point(color = "#FF6666", size = 2) +
stat_smooth(method="loess", formula = 'y ~ x') +
geom_hline(yintercept=0, col="red", linetype="dashed") +
labs(x = "Fitted values", y = "Residuals", title = "Residual vs Fitted") +
theme_light() +
annotation_custom(grob)
}
# function to look for outliers ======
ouliersRemoval <- function(model) {
# check for outliers
df <- tibble(model$data[c(1,2,4)])
ei.s <- residuals(model)/sqrt(sum(residuals(model)^2)/(nrow(df) - length(model$coefficients)))
alpha <- 0.1 ; n = nrow(df); p = length(model$coefficients)
cutoff <- qt(1-alpha/(2*n), n -p )
cutoff.deleted <- qt(1-alpha/(2*n), n -p -1 )
outliers <- which(abs(ei.s) > cutoff)
# create new data without the outliers
# return new data
if (length(outliers) == 0) {
print("No outliers detected.")
} else{
new.data <- df[-outliers,]
return(new.data)
}
}
dr_model <- selected_model
# function to apply correction =====
applyBoxCox <- function(dr_model,data){
# calculate shapiro-wilk
Shap_test <- shapiro.test(residuals(dr_model))
Shap_pval <- Shap_test$p.value
# run fligner test - homogeneity
data_model <- data.frame(dr_model$data[c(1,2,4)])
direction <- rep("Lower",nrow(data_model))
direction[data_model$var_name > median(data_model$var_name)] <- "Upper"
data_model$direction <- as.factor(direction)
the.FKtest <- fligner.test(residuals(dr_model), data_model$direction)
FK_pval <- the.FKtest$p.value
# apply correction
if (FK_pval <= 0.05 | Shap_pval <= 0.05) {
print("Box-Cox correction applied using the Anova method. New model saved into global environment.")
corrected_model <<- boxcox(dr_model,method="anova", plotit = F)
} else {
print("No correction needed.")
}
}
# function to call the first type of plot =====
ggDoseResponse <- function(DR_model, error_bars = TRUE) {
# general sd function
std_mean <- function(x) sd(x,na.rm=TRUE)/sqrt(length(x))
# correct model dataframe and create a dataframe to plot
DR_data <- DR_model$data
colnames(DR_data) <- c("dose", "var_name", "variable1", "variable2", "weights")
df_plot <- tibble(DR_data) %>%
group_by(dose, variable2) %>%
summarize(var_value = mean(var_name, na.rm=TRUE),
sd = std_mean(var_name)) %>%
mutate(dose = dose + 0.1)
# generate plot
p1 <- ggplot(data = df_plot, aes(x = dose, y = var_value)) +
geom_point(aes(color = variable2,
text = paste("Dose:", dose,
"\nHerbicide:", variable2,
"\nBiomass:", var_value))) +
scale_x_log10() +
geom_smooth(aes(color = variable2),
method = drm,
method.args = list(fct = L.4()), se = F) +
theme_light() +
labs(title= "", x = "Dose (g a.i /ha)", y = "Biomass") +
theme(legend.position = "bottom") + guides(color=guide_legend(title="Group"))
if (parameter == 3) {
}
if (error_bars = TRUE) {
p1 +
geom_errorbar(mapping=aes(ymin=var_value-sd, ymax=var_value+sd,
color = variable2), width=0.2, alpha = .4)
} else {
p1
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.