# Tests for functions dependent on a seurat object
set.seed(42)
pbmc.file <- system.file('extdata', 'pbmc_raw.txt', package = 'SeuratBasics')
pbmc.test <- as(as.matrix(read.table(pbmc.file, sep = "\t", row.names = 1)), "dgCMatrix")
# Tests for object creation (via CreateSeuratObject)
# --------------------------------------------------------------------------------
context("Object creation")
fake.meta.data <- data.frame(rep(1, ncol(pbmc.test)))
rownames(fake.meta.data) <- colnames(pbmc.test)
colnames(fake.meta.data) <- "FMD"
object <- CreateSeuratObject(counts = pbmc.test,
meta.data = fake.meta.data)
test_that("object initialization actually creates seurat object", {
expect_is(object, "Seurat")
})
test_that("meta.data slot generated correctly", {
expect_equal(dim(object[[]]), c(80, 4))
expect_equal(colnames(object[[]]), c("orig.ident", "nCount_RNA", "nFeature_RNA", "FMD"))
expect_equal(rownames(object[[]]), colnames(object))
expect_equal(object[["nFeature_RNA"]][1:5, ], c(47, 52, 50, 56, 53))
expect_equal(object[["nCount_RNA"]][75:80, ], c(228, 527, 202, 157, 150, 233))
})
object.filtered <- CreateSeuratObject(
counts = pbmc.test,
min.cells = 10,
min.features = 30
)
test_that("Filtering handled properly", {
expect_equal(nrow(x = GetAssayData(object = object.filtered, slot = "counts")), 163)
expect_equal(ncol(x = GetAssayData(object = object.filtered, slot = "counts")), 77)
})
test_that("Metadata check errors correctly", {
pbmc.md <- pbmc_small[[]]
pbmc.md.norownames <- as.matrix(pbmc.md)
rownames(pbmc.md.norownames) <- NULL
expect_error(CreateSeuratObject(counts = pbmc.test, meta.data = pbmc.md.norownames),
"Row names not set in metadata. Please ensure that rownames of metadata match column names of data matrix")
})
# Tests for NormalizeData
# --------------------------------------------------------------------------------
context("NormalizeData")
test_that("NormalizeData error handling", {
expect_error(NormalizeData(object = object, assay = "FAKE"))
expect_equal(
object = GetAssayData(
object = NormalizeData(
object = object,
normalization.method = NULL,
verbose = FALSE
),
slot = "data"
),
expected = GetAssayData(object = object, slot = "counts")
)
})
object <- NormalizeData(object = object, verbose = FALSE, scale.factor = 1e6)
test_that("NormalizeData scales properly", {
expect_equal(GetAssayData(object = object, slot = "data")[2, 1], 9.567085, tolerance = 1e-6)
expect_equal(GetAssayData(object = object, slot = "data")[161, 55], 8.415309, tolerance = 1e-6)
expect_equal(Command(object = object, command = "NormalizeData.RNA", value = "scale.factor"), 1e6)
expect_equal(Command(object = object, command = "NormalizeData.RNA", value = "normalization.method"), "LogNormalize")
})
normalized.data <- LogNormalize(data = GetAssayData(object = object[["RNA"]], slot = "counts"), verbose = FALSE)
test_that("LogNormalize normalizes properly", {
expect_equal(
LogNormalize(data = GetAssayData(object = object[["RNA"]], slot = "counts"), verbose = FALSE),
LogNormalize(data = as.data.frame(as.matrix(GetAssayData(object = object[["RNA"]], slot = "counts"))), verbose = FALSE)
)
})
clr.counts <- NormalizeData(object = pbmc.test, normalization.method = "CLR", verbose = FALSE)
test_that("CLR normalization returns expected values", {
expect_equal(dim(clr.counts), c(dim(pbmc.test)))
expect_equal(clr.counts[2, 1], 0.5517828, tolerance = 1e-6)
expect_equal(clr.counts[228, 76], 0.5971381, tolerance = 1e-6)
expect_equal(clr.counts[230, 80], 0)
})
rc.counts <- NormalizeData(object = pbmc.test, normalization.method = "RC", verbose = FALSE)
test_that("Relative count normalization returns expected values", {
expect_equal(rc.counts[2, 1], 142.8571, tolerance = 1e-6)
expect_equal(rc.counts[228, 76], 18.97533, tolerance = 1e-6)
expect_equal(rc.counts[230, 80], 0)
rc.counts <- NormalizeData(object = pbmc.test, normalization.method = "RC", verbose = FALSE, scale.factor = 1e6)
expect_equal(rc.counts[2, 1], 14285.71, tolerance = 1e-6)
})
# Tests for ScaleData
# --------------------------------------------------------------------------------
context("ScaleData")
object <- ScaleData(object, verbose = FALSE)
test_that("ScaleData returns expected values when input is a sparse matrix", {
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[1, 1], -0.4148587, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[75, 25], -0.2562305, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[162, 59], -0.4363939, tolerance = 1e-6)
})
new.data <- as.matrix(GetAssayData(object = object[["RNA"]], slot = "data"))
new.data[1, ] <- rep(x = 0, times = ncol(x = new.data))
object2 <- object
object2[["RNA"]] <- SetAssayData(
object = object[["RNA"]],
slot = "data",
new.data = new.data
)
object2 <- ScaleData(object = object2, verbose = FALSE)
object <- ScaleData(object = object, verbose = FALSE)
test_that("ScaleData returns expected values when input is not sparse", {
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[75, 25], -0.2562305, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[162, 59], -0.4363939, tolerance = 1e-6)
})
test_that("ScaleData handles zero variance features properly", {
expect_equal(GetAssayData(object = object2[["RNA"]], slot = "scale.data")[1, 1], 0)
expect_equal(GetAssayData(object = object2[["RNA"]], slot = "scale.data")[1, 80], 0)
})
ng1 <- rep(x = "g1", times = round(x = ncol(x = object) / 2))
object$group <- c(ng1, rep(x = "g2", times = ncol(x = object) - length(x = ng1)))
g1 <- subset(x = object, group == "g1")
g1 <- ScaleData(object = g1, features = rownames(x = g1), verbose = FALSE)
g2 <- subset(x = object, group == "g2")
g2 <- ScaleData(object = g2, features = rownames(x = g2), verbose = FALSE)
object <- ScaleData(object = object, features = rownames(x = object), verbose = FALSE, split.by = "group")
test_that("split.by option works", {
expect_equal(GetAssayData(object = object, slot = "scale.data")[, Cells(x = g1)],
GetAssayData(object = g1, slot = "scale.data"))
expect_equal(GetAssayData(object = object, slot = "scale.data")[, Cells(x = g2)],
GetAssayData(object = g2, slot = "scale.data"))
})
g1 <- ScaleData(object = g1, features = rownames(x = g1), vars.to.regress = "nCount_RNA", verbose = FALSE)
g2 <- ScaleData(object = g2, features = rownames(x = g2), vars.to.regress = "nCount_RNA", verbose = FALSE)
object <- ScaleData(object = object, features = rownames(x = object), verbose = FALSE, split.by = "group", vars.to.regress = "nCount_RNA")
test_that("split.by option works with regression", {
expect_equal(GetAssayData(object = object, slot = "scale.data")[, Cells(x = g1)],
GetAssayData(object = g1, slot = "scale.data"))
expect_equal(GetAssayData(object = object, slot = "scale.data")[, Cells(x = g2)],
GetAssayData(object = g2, slot = "scale.data"))
})
# Tests for various regression techniques
context("Regression")
object <- ScaleData(
object = object,
vars.to.regress = "nCount_RNA",
features = rownames(x = object)[1:10],
verbose = FALSE,
model.use = "linear")
test_that("Linear regression works as expected", {
expect_equal(dim(x = GetAssayData(object = object[["RNA"]], slot = "scale.data")), c(10, 80))
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[1, 1], -0.6436435, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[5, 25], -0.09035383, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[10, 80], -0.2723782, tolerance = 1e-6)
})
object <- ScaleData(
object,
vars.to.regress = "nCount_RNA",
features = rownames(x = object)[1:10],
verbose = FALSE,
model.use = "negbinom")
test_that("Negative binomial regression works as expected", {
expect_equal(dim(x = GetAssayData(object = object[["RNA"]], slot = "scale.data")), c(10, 80))
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[1, 1], -0.5888811, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[5, 25], -0.2553394, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[10, 80], -0.1921429, tolerance = 1e-6)
})
test_that("Regression error handling checks out", {
expect_error(ScaleData(object, vars.to.regress = "nCount_RNA", model.use = "not.a.model", verbose = FALSE))
})
object <- ScaleData(
object,
vars.to.regress = "nCount_RNA",
features = rownames(x = object)[1:10],
verbose = FALSE,
model.use = "poisson")
test_that("Poisson regression works as expected", {
expect_equal(dim(x = GetAssayData(object = object[["RNA"]], slot = "scale.data")), c(10, 80))
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[1, 1], -1.011717, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[5, 25], 0.05575307, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], slot = "scale.data")[10, 80], -0.1662119, tolerance = 1e-6)
})
#Tests for SampleUMI
#--------------------------------------------------------------------------------
context("SampleUMI")
downsampled.umis <- SampleUMI(
data = GetAssayData(object = object, slot = "counts"),
max.umi = 100,
verbose = FALSE
)
downsampled.umis.p.cell <- SampleUMI(
data = GetAssayData(object = object, slot = "counts"),
max.umi = seq(50, 840, 10),
verbose = FALSE,
upsample = TRUE
)
test_that("SampleUMI gives reasonable downsampled/upsampled UMI counts", {
expect_true(!any(colSums(x = downsampled.umis) < 30, colSums(x = downsampled.umis) > 120))
expect_error(SampleUMI(data = GetAssayData(object = object, slot = "raw.data"), max.umi = rep(1, 5)))
expect_true(!is.unsorted(x = colSums(x = downsampled.umis.p.cell)))
expect_error(SampleUMI(
data = GetAssayData(object = object, slot = "counts"),
max.umi = seq(50, 900, 10),
verbose = FALSE,
upsample = TRUE
))
})
# Tests for FindVariableFeatures
# --------------------------------------------------------------------------------
context("FindVariableFeatures")
object <- FindVariableFeatures(object = object, selection.method = "mean.var.plot", verbose = FALSE)
test_that("mean.var.plot selection option returns expected values", {
expect_equal(VariableFeatures(object = object)[1:4], c("PTGDR", "SATB1", "ZNF330", "S100B"))
expect_equal(length(x = VariableFeatures(object = object)), 20)
expect_equal(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')$mean[1:2], c(8.328927, 8.444462), tolerance = 1e6)
expect_equal(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')$dispersion[1:2], c(10.552507, 10.088223), tolerance = 1e6)
expect_equal(as.numeric(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')$dispersion.scaled[1:2]), c(0.1113214, -0.1113214), tolerance = 1e6)
})
object <- FindVariableFeatures(object, selection.method = "dispersion", verbose = FALSE)
test_that("dispersion selection option returns expected values", {
expect_equal(VariableFeatures(object = object)[1:4], c("PCMT1", "PPBP", "LYAR", "VDAC3"))
expect_equal(length(x = VariableFeatures(object = object)), 230)
expect_equal(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')$mean[1:2], c(8.328927, 8.444462), tolerance = 1e6)
expect_equal(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')$dispersion[1:2], c(10.552507, 10.088223), tolerance = 1e6)
expect_equal(as.numeric(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')$dispersion.scaled[1:2]), c(0.1113214, -0.1113214), tolerance = 1e6)
expect_true(!is.unsorted(rev(HVFInfo(object = object[["RNA"]], selection.method = 'mvp')[VariableFeatures(object = object), "dispersion"])))
})
object <- FindVariableFeatures(object, selection.method = "vst", verbose = FALSE)
test_that("vst selection option returns expected values", {
expect_equal(VariableFeatures(object = object)[1:4], c("PPBP", "IGLL5", "VDAC3", "CD1C"))
expect_equal(length(x = VariableFeatures(object = object)), 230)
expect_equal(unname(object[["RNA"]][["vst.variance", drop = TRUE]][1:2]), c(1.0251582, 1.2810127), tolerance = 1e6)
expect_equal(unname(object[["RNA"]][["vst.variance.expected", drop = TRUE]][1:2]), c(1.1411616, 2.7076228), tolerance = 1e6)
expect_equal(unname(object[["RNA"]][["vst.variance.standardized", drop = TRUE]][1:2]), c(0.8983463, 0.4731134), tolerance = 1e6)
expect_true(!is.unsorted(rev(object[["RNA"]][["vst.variance.standardized", drop = TRUE]][VariableFeatures(object = object)])))
})
# Tests for internal functions
# ------------------------------------------------------------------------------
norm.fxn <- function(x) {x / mean(x)}
test_that("CustomNormalize works as expected", {
expect_equal(
CustomNormalize(data = pbmc.test, custom_function = norm.fxn, margin = 2),
apply(X = pbmc.test, MARGIN = 2, FUN = norm.fxn)
)
expect_equal(
CustomNormalize(data = as.matrix(pbmc.test), custom_function = norm.fxn, margin = 2),
apply(X = pbmc.test, MARGIN = 2, FUN = norm.fxn)
)
expect_equal(
CustomNormalize(data = as.data.frame(as.matrix(pbmc.test)), custom_function = norm.fxn, margin = 2),
apply(X = pbmc.test, MARGIN = 2, FUN = norm.fxn)
)
expect_equal(
CustomNormalize(data = pbmc.test, custom_function = norm.fxn, margin = 1),
t(apply(X = pbmc.test, MARGIN = 1, FUN = norm.fxn))
)
expect_error(CustomNormalize(data = pbmc.test, custom_function = norm.fxn, margin = 10))
})
# Tests for SCTransform
# ------------------------------------------------------------------------------
object <- suppressWarnings(SCTransform(object = object, verbose = FALSE))
test_that("SCTransform wrapper works as expected", {
expect_true("SCT" %in% names(object))
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], slot = "scale.data"))[1]), 13.33038640)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], slot = "scale.data"))[5]), 0)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], slot = "data"))[1]), 55.29678, tolerance = 1e6)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], slot = "data"))[5]), 11.74404, tolerance = 1e6)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], slot = "counts"))[1]), 123)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], slot = "counts"))[5]), 28)
expect_equal(length(VariableFeatures(object[["SCT"]])), 220)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.detection_rate"], 0.15)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.gmean"], 0.2027364, tolerance = 1e6)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.variance"], 1.025158, tolerance = 1e6)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.residual_mean"], 0.2512783, tolerance = 1e6)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.residual_variance"], 3.551259, tolerance = 1e6)
})
object <- suppressWarnings(SCTransform(object = object, ncells = 40, verbose = FALSE))
test_that("SCTransform ncells param works", {
expect_true("SCT" %in% names(object))
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], slot = "scale.data"))[1]), 11.834969847)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], slot = "scale.data"))[5]), 0)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], slot = "data"))[1]), 55.29678, tolerance = 1e6)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], slot = "data"))[5]), 11.74404, tolerance = 1e6)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], slot = "counts"))[1]), 121)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], slot = "counts"))[5]), 25)
expect_equal(length(VariableFeatures(object[["SCT"]])), 220)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.detection_rate"], 0.15)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.gmean"], 0.2027364, tolerance = 1e6)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.variance"], 1.025158, tolerance = 1e6)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.residual_mean"], 0.2512783, tolerance = 1e6)
expect_equal(object[["SCT"]][[]]["MS4A1", "sct.residual_variance"], 3.551259, tolerance = 1e6)
})
suppressWarnings(object[["SCT_SAVE"]] <- object[["SCT"]])
object[["SCT"]] <- SetAssayData(object = object[["SCT"]], slot = "scale.data", new.data = GetAssayData(object = object[["SCT"]], slot = "scale.data")[1:100, ])
object <- GetResidual(object = object, features = rownames(x = object), verbose = FALSE)
test_that("GetResidual works", {
expect_equal(dim(GetAssayData(object = object[["SCT"]], slot = "scale.data")), c(220, 80))
expect_equal(
GetAssayData(object = object[["SCT"]], slot = "scale.data"),
GetAssayData(object = object[["SCT_SAVE"]], slot = "scale.data")
)
expect_warning(GetResidual(object, features = "asd"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.