elindley_mix = function(data, g, lim.em = 100, criteria = "dif.psi",
epsilon = 1e-05, plot.it = TRUE, empirical = FALSE,
col.estimated = "orange", col.empirical = "navy", ...){
if((is.numeric(data) || is.numeric(data$sample)) && g == floor(g) && g > 1 &&
is.logical(plot.it) && is.logical(empirical) &&
(criteria == "dif.lh" || criteria == "dif.psi")){
if(is.list(data)){data = data$sample}
data = sort(data)
n = length(data)
psi = matrix(0, ncol = g, nrow = 2)
k = kmeans(data, g)
for(j in 1:g){
est = elindley(data[k$cluster == j], plot.it = F)
psi[2, j] = c(est$beta_hat)
}
betas = psi[2,]
medias = (betas * (1 + 2*betas))/(1 + betas)
k = kmeans(data, g, centers = medias)
psi[1, ] = pi = table(k$cluster)/n
for(j in 1:g){
est = elindley(data[k$cluster == j], plot.it = F)
psi[2, j] = c(est$beta_hat)
}
betas = psi[2,]
count = 0
L = function(i){dlindley_mix(data[i], pi, betas, log = TRUE)}
LF = sum(sapply(1:n, L));
while(T){
progress <- function (x, max = lim.em) {
percent <- x / max * 100
cat(sprintf('\r[%-50s] %d%%',
paste(rep('=', percent / 2), collapse = ''),
floor(percent)))
if (x == max)
cat('\n')
}
if(count == 0)
cat("Limit of EM Iterations (", lim.em ,"): \n", sep = "")
progress(count)
Wij = matrix(0, nrow = n, ncol = g)
for(i in 1:n){
for(j in 1:g){
Wij[i,j] = as.numeric((pi[j]*dlindley(data[i], beta = betas[j]))/
sum((pi * dlindley(data[i], beta = betas))))
}
}
Wj <- colSums(Wij)
pi <- 1/n * Wj
Q = function(param){
betast = param
Qj = function(j){
aux = 0
for(i in 1:n){
aux = aux + Wij[i,j] * log(pi[j] * dlindley(data[i], betast[j]))
}
return(aux)
}
q = sum(sapply(1:g, Qj))
if(q == -Inf) return(.Machine$double.xmax/1e+08)
if(q == Inf) return(-.Machine$double.xmax/1e+08)
return(-q)
}
grQ = function(param){
betast = param
gr = rep(0, g)
for(i in 1:n){
gr = gr + Wij[i, ] * data[i]/(betast^2) - Wij[i, ]/betast -
Wij[i, j]/(betast + 1)
}
return(-gr)
}
estim = optim(par = betas, fn = Q, method = "L-BFGS-B", lower = 1e-04,
upper = Inf, gr = grQ)
betas = estim$par
psi_new = matrix(c(pi, betas), 2, byrow = T)
LF_new = sum(sapply(1:n, L))
if(criteria == "dif.lh"){
crit = LF_new - LF
if((abs(crit) < epsilon)){cat("\n"); break}
LF <- LF_new
}
else{
crit = max(abs(psi - psi_new))
if(any(is.na(crit))){
k = kmeans(data, g)
for(j in 1:g){
est = elindley(data[k$cluster == j], plot.it = F)
psi[2, j] = c(est$beta_hat)
}
betas = psi[2,]
medias = (betas * (1 + 2*betas))/(1 + betas)
k = kmeans(data, g, centers = medias)
psi[1, ] = pi = table(k$cluster)/n
for(j in 1:g){
est = elindley(data[k$cluster == j], plot.it = F)
psi[2, j] = c(est$beta_hat)
}
betas = psi[2,]
next
}
if(crit < epsilon) {cat("\n"); break}
psi = psi_new
}
count = count + 1
if(count >= lim.em){
progress(count)
message("\nLimit of Iterations reached!")
break
}
}
}
p = 2*g - 1
aic = 2*p - 2*LF_new
bic = p*log(n) - 2*LF_new
if(plot.it == TRUE){
d.breaks = ceiling(nclass.Sturges(data)*2.5)
modal = 0
for(i in 1:g){
modal[i] = max(dlindley_mix(c(0, betas[i]), pi, betas))
if(modal[i] > 10* dlindley_mix(1, pi, betas)){
modal[i] = dlindley_mix(1, pi, betas)
}
}
modal = min(c(1, max(modal, hist(data, plot = FALSE,
if(any(names(list(...)) ==
"breaks") == FALSE){
breaks = d.breaks}, ...)$density)))
hist(data, freq = F, border = "gray48",
main = "Sampling distribution of X", xlab = "x",
ylab = "Density",
ylim = c(0, modal),
if(any(names(list(...)) == "breaks") == FALSE){breaks = d.breaks}, ...)
estimada = function(x){dlindley_mix(x, pi, betas)}
curve(estimada, col = col.estimated, lwd = 3, add = T)
if(empirical){
lines(density(data),col = col.empirical, lwd = 3)
legend("topright", legend=(c("Empirical", "Estimated")),
fill=c(col.empirical, col.estimated), border = c(col.empirical,
col.estimated),
bty="n")
}
else{
legend("topright", legend = "Estimated", fill = col.estimated, border =
col.estimated, bty="n")
}
p <- recordPlot()
}
medias = (betas * (1 + 2*betas))/(1 + betas)
ordem = order(medias)
medias = medias[ordem]
pi = pi[ordem]
betas = betas[ordem]
si = function(i){
si = t(t(c((dlindley(data[i], betas[-g]) - dlindley(data[i], betas[g]))/
dlindley_mix(data[i], pi, betas),
pi * (((data[i] + 1) * exp(-data[i]/betas) *
(data[i]/betas * (betas + 1) - (2*betas + 1)))/
(betas^2 * (betas + 1)^2))/
dlindley_mix(data[i], pi, betas))))
rownames(si) = c(paste0("pi_", as.character(1:(g-1))),
paste0("beta_", as.character(1:(g))))
si %*% t(si)
}
se = sqrt(diag(solve(Reduce('+', sapply(1:n, si, simplify = FALSE)))))
class = kmeans(data, centers = medias)$cluster
if(plot.it){
output = list(class, pi, betas, se, LF_new, aic, bic, count, p)
names(output) = c("classification", "pi_hat", "beta_hat",
"stde", "logLik", "AIC", "BIC", "EM_iterations", "plot")}
else{
output = list(class, pi, betas, se, LF_new, aic, bic, count)
names(output) = c("classification", "pi_hat", "beta_hat",
"stde", "logLik", "AIC", "BIC", "EM_iterations")
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.