enorm_mix = function(data, g, lim.em = 100, criteria = "dif.psi",
epsilon = 1e-05,plot.it = TRUE, empirical = FALSE,
col.estimated = "orange", col.empirical = "navy", ...){
if((is.numeric(data) || is.numeric(data$sample)) && g == floor(g) && g > 1 &&
is.logical(plot.it) && is.logical(empirical) &&
(criteria == "dif.lh" || criteria == "dif.psi")){
if(is.list(data)){data = data$sample}
data <- sort(data)
n <- length(data)
k <- kmeans(data, g)
pi <- table(k$cluster)/n
medias <- tapply(data, k$cluster, mean)
dps <- tapply(data, k$cluster, sd)
psi <- matrix(c(pi, medias, dps), 3, byrow = T)
count = 0
L <- function(i){dnorm_mix(data[i], pi, medias, dps, log = TRUE)}
LF <- sum(sapply(1:n, L))
while(T){
progress <- function (x, max = lim.em) {
percent <- x / max * 100
cat(sprintf('\r[%-50s] %d%%',
paste(rep('=', percent / 2), collapse = ''),
floor(percent)))
if (x == max)
cat('\n')
}
if(count == 0)
cat("Limit of EM Iterations (", lim.em ,"): \n", sep = "")
progress(count)
Wij <- matrix(0, nrow = n, ncol = g)
for(i in 1:n){
for(j in 1:g){
Wij[i,j] <- as.numeric((pi[j]*dnorm(data[i], mean = medias[j],
sd = dps[j]))/
sum((pi * dnorm(data[i], mean = medias,
sd = dps))))
}
}
Wj <- colSums(Wij)
pi <- 1/n * Wj
pi = pi/sum(pi)
medias <- as.numeric(lapply(1:g, function(j){
aux = 0; for(i in 1:n){aux = aux + (data[i]*Wij[i,j])/(Wj[j])};
return(aux)}))
dps <- sqrt(as.numeric(lapply(1:g, function(j){
aux = 0; for(i in 1:n){
aux = aux + ((data[i]-medias[j])^2*Wij[i,j])/(Wj[j])};
return(aux)})))
psi_new <- matrix(c(pi, medias, dps), 3, byrow = T)
LF_new <- sum(sapply(1:n, L))
if(criteria == "dif.lh"){
crit <- LF_new - LF
if((abs(crit) < epsilon)){cat("\n"); break}
LF <- LF_new
}
else{
crit = max(abs(psi - psi_new))
if(any(is.na(crit))){
k <- kmeans(data, g)
pi <- table(k$cluster)/n
medias <- tapply(data, k$cluster, mean)
dps <- tapply(data, k$cluster, sd)
psi <- matrix(c(pi, medias, dps), 3, byrow = T)
next
}
if(crit < epsilon){cat("\n"); break}
psi <- psi_new
}
count = count + 1
if(count >= lim.em){
progress(count)
message("\nLimit of Iterations reached!")
break
}
}
p = 3*g - 1
aic = 2*p - 2*LF_new
bic = p*log(n) - 2*LF_new
if(plot.it){
d.breaks <- ceiling(nclass.Sturges(data)*2.5)
modal <- max(dnorm_mix(medias, pi, medias, dps))
hist(data,freq = F,border = "gray48",
main = "Sampling distribution of X", xlab = "x",
ylab = "Density",
ylim = c(0, modal),
if(any(names(list(...)) == "breaks") == FALSE){breaks =
d.breaks}, ...)
estimada = function(x){dnorm_mix(x, pi, medias, dps)}
curve(estimada, col = col.estimated, lwd = 3, add = T)
if(empirical){
lines(density(data),col = col.empirical, lwd = 3)
legend("topright", legend=(c("Empirical", "Estimated")),
fill=c(col.empirical, col.estimated), border = c(col.empirical,
col.estimated),
bty="n")
}
else{
legend("topright", legend = "Estimated", fill = col.estimated,
border = col.estimated,
bty="n")
}
p <- recordPlot()
}
si = function(i){
ordem = order(medias)
pi = pi[ordem]
medias = medias[ordem]
dps = dps[ordem]
si = t(t(c((dnorm(data[i], medias[-g], dps[-g]) -
dnorm(data[i],medias[g], dps[g]))/
dnorm_mix(data[i], pi, medias, dps),
pi * ((data[i] - medias) *
exp(-(data[i] - medias)^2/(2 * dps^2)) /
(sqrt(4 * acos(0)) * dps^3))/
dnorm_mix(data[i], pi, medias, dps),
pi * (exp(-(data[i] - medias)^2/(2 * dps^2)) *
((data[i] - medias)^2/(dps^2) - 1) /
(2 *sqrt(4*acos(0))*dps^3))/
dnorm_mix(data[i], pi, medias, dps))))
rownames(si) = c(paste0("pi_", as.character(1:(g-1))),
paste0("mu_", as.character(1:(g))),
paste0("sigma2_", as.character(1:(g))))
si %*% t(si)
}
se = sqrt(diag(solve(Reduce('+', sapply(1:n, si, simplify = FALSE)))))
class = kmeans(data, centers = medias)$cluster
if(plot.it){
output = list(class, pi, medias, dps, se, LF_new,
aic, bic, count, p)
names(output) = c("classification", "pi_hat", "mu_hat", "sigma_hat",
"stde","logLik", "AIC", "BIC",
"EM_iterations", "plot")}
else{
output = list(class, pi, medias, dps, se, LF_new,
aic, bic, count)
names(output) = c("classification", "pi_hat", "mu_hat", "sigma_hat",
"stde", "logLik", "AIC", "BIC",
"EM_iterations")
}
return(output)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.