eweibull_mix = function(data, g, lim.em = 100, criteria = "dif.psi",
epsilon = 1e-05, plot.it = TRUE, empirical = FALSE,
col.estimated = "orange", col.empirical = "navy", ...){
if((is.numeric(data) || is.numeric(data$sample)) && g == floor(g) && g > 1 &&
is.logical(plot.it) && is.logical(empirical) &&
(criteria == "dif.lh" || criteria == "dif.psi")){
if(is.list(data)){data = data$sample}
data = sort(data)
n = length(data)
psi = matrix(0, ncol = g, nrow = 3)
k = kmeans(data, g)
for(j in 1:g){
est = eweibull(data[k$cluster == j], plot.it = F)
psi[1:3 > 1, j] = c(est$alpha_hat, est$beta_hat)
}
alphas = psi[2,]
betas = psi[3,]
medias = betas * gamma(1 + 1/alphas)
k = kmeans(data, g, centers = medias)
psi[1, ] = pi = table(k$cluster)/n
for(j in 1:g){
est = eweibull(data[k$cluster == j], plot.it = F)
psi[1:3 > 1, j] = c(est$alpha_hat, est$beta_hat)
}
alphas = psi[2,]
betas = psi[3,]
count = 0
L = function(i){dweibull_mix(data[i], pi, alphas, betas, log = TRUE)}
LF = sum(sapply(1:n, L))
while(T){
progress <- function (x, max = lim.em) {
percent <- x / max * 100
cat(sprintf('\r[%-50s] %d%%',
paste(rep('=', percent / 2), collapse = ''),
floor(percent)))
if (x == max)
cat('\n')
}
if(count == 0)
cat("Limit of EM Iterations (", lim.em ,"): \n", sep = "")
progress(count)
Wij = matrix(0, nrow = n, ncol = g)
for(i in 1:n){
for(j in 1:g){
Wij[i,j] <- as.numeric((pi[j]*dweibull(data[i], alphas[j],
betas[j]))/
sum((pi * dweibull(data[i], alphas,
betas))))
}
}
Wj <- colSums(Wij)
pi <- 1/n * Wj
pi = pi/sum(pi)
if(any(is.nan(pi))){
medias = betas * gamma(1 + 1/alphas)
psi[1, ] = pi = table(kmeans(data, g, centers = medias)$cluster)/n
}
Q = function(param){
alphast = param[(1):(g)]
betast = param[(g + 1):(2*g)]
aux = 0
for(i in 1:n){
aux2 = Wij[i,j] * dweibull_mix(data[i], pi, alphast, betast,
log = TRUE)
if(is.nan(aux2)){next}
if(aux2 == Inf){aux = Inf; break
}else{
if(aux2 == -Inf){aux = -Inf; break}
else{
aux = aux + aux2}}
}
if(aux == -Inf) return(.Machine$double.xmax/1e+100)
if(aux == Inf) return(-.Machine$double.xmax/1e+100)
return(-aux)
}
grQ = function(param){
alphast = param[(1):(g)]
betast = param[(g + 1):(2*g)]
gr1 = gr2 = rep(0, g)
for(i in 1:n){
gr1 = gr1 + (Wij[i, ]/alphast + Wij[i, ]*log(data[i]) -
Wij[i, ]*log(betast) - Wij[i, ] *
log(data[i]/betast*(data[i]/betast)^alphast))
gr2 = gr2 + (-Wij[i, ]/betast - Wij[i, ]*(alphast - 1)/betast +
alphast/betast * Wij[i, ]*(data[i]/betast)^alphast)
}
gr = c(gr1, gr2)
return(-gr)
}
estim = NULL
while(is.null(estim)){
estim = tryCatch(optim(par = c(alphas, betas), fn = Q,
method = "L-BFGS-B", lower = rep(1e-01, 2 * g),
upper = rep(Inf, 2 * g), gr = grQ),
error = function(e){NULL})
if(is.null(estim)){
alphas = alphas + 0.1
betas = betas + 0.1
count = max(c(0, count - 1))
}
}
alphas = estim$par[1:g]
betas = estim$par[(g + 1):(2*g)]
psi_new = matrix(c(pi, alphas, betas), 3, byrow = T)
LF_new = sum(sapply(1:n, L))
if(criteria == "dif.lh"){
crit = LF_new - LF
if((abs(crit) < epsilon)){cat("\n"); break}
LF <- LF_new
}
else{
crit = max(abs(psi - psi_new))
if(any(is.na(crit))){
k = kmeans(data, g)
for(j in 1:g){
est = eweibull(data[k$cluster == j], plot.it = F)
psi[1:3 > 1, j] = c(est$alpha_hat, est$beta_hat)
}
alphas = psi[2,]
betas = psi[3,]
medias = betas * gamma(1 + 1/alphas)
k = kmeans(data, g, centers = medias)
psi[1, ] = pi = table(k$cluster)/n
for(j in 1:g){
est = eweibull(data[k$cluster == j], plot.it = F)
psi[1:3 > 1, j] = c(est$alpha_hat, est$beta_hat)
}
alphas = psi[2,]
betas = psi[3,]
next
}
if(crit < epsilon) {cat("\n"); break}
psi = psi_new
}
count = count + 1
if(count >= lim.em){
progress(count)
message("\nLimit of Iterations reached!")
break
}
}
}
p = 3*g - 1
aic = 2*p - 2*LF_new
bic = p*log(n) - 2*LF_new
if(plot.it == TRUE){
d.breaks = ceiling(nclass.Sturges(data)*2.5)
modal = max(dweibull_mix(c(0.1,
betas * ((alphas - 1)/alphas)^(alphas - 1)),
pi, alphas, betas))
modal = max(modal, hist(data, plot = FALSE, if(any(names(list(...)) ==
"breaks") == FALSE){
breaks = d.breaks}, ...)$density)
hist(data, freq = F, border = "gray48",
main = "Sampling distribution of X", xlab = "x",
ylab = "Density",
ylim = c(0, modal),
if(any(names(list(...)) == "breaks") == FALSE){breaks = d.breaks}, ...)
estimada = function(x){dweibull_mix(x, pi, alphas, betas)}
curve(estimada, col = col.estimated, lwd = 3, add = T)
if(empirical){
lines(density(data),col = col.empirical, lwd = 3)
legend("topright", legend=(c("Empirical", "Estimated")),
fill=c(col.empirical, col.estimated), border = c(col.empirical,
col.estimated),
bty="n")
}
else{
legend("topright", legend = "Estimated", fill = col.estimated, border =
col.estimated, bty="n")
}
p <- recordPlot()
}
medias = betas * gamma(1 + 1/alphas)
ordem = order(medias)
medias = medias[ordem]
pi = pi[ordem]
alphas = alphas[ordem]
betas = betas[ordem]
si = function(i){
si = t(t(c((dweibull(data[i], alphas[-g], betas[-g]) -
dweibull(data[i], alphas[g], betas[g]))/
dweibull_mix(data[i], pi, alphas, betas),
pi * ((1/betas * (data[i]/betas)^(alphas - 1) + alphas/betas *
(data[i]/betas)^(alphas - 1) * log(data[i]/betas)) *
exp(-(data[i]/betas)^alphas) - alphas/betas *
(data[i]/betas)^(alphas - 1) *
exp(-(data[i]/betas)^(alphas)) *
(data[i]/betas)^alphas * log(data[i]/betas))/
dweibull_mix(data[i], pi, alphas, betas),
pi * ((alphas/betas * data[i]^(alphas - 1) * (1 - alphas) *
betas^(-alphas) - alphas/betas^2 *
(data[i]/betas)^(alphas - 1)) *
exp(-(data[i]/betas)^(alphas)) + alphas/betas *
(data[i]/betas)^(alphas - 1) *
exp(-(data[i]/betas)^(alphas)) * alphas *
data[i]^(alphas) * betas^(-(alphas + 1)))/
dweibull_mix(data[i], pi, alphas, betas))))
rownames(si) = c(paste0("pi_", as.character(1:(g-1))),
paste0("alpha_", as.character(1:g)),
paste0("beta_", as.character(1:g)))
si %*% t(si)
}
se = sqrt(diag(solve(Reduce('+', sapply(1:n, si, simplify = FALSE)))))
class = kmeans(data, centers = medias)$cluster
if(plot.it){
output = list(class, pi, alphas, betas,
se, LF_new, aic, bic, count, p)
names(output) = c("classification", "pi_hat", "alpha_hat", "beta_hat",
"stde", "logLik", "AIC", "BIC", "EM_iterations", "plot")}
else{
output = list(class, pi, alphas, betas,
se, LF_new, aic, bic, count)
names(output) = c("classification", "pi_hat", "alpha_hat", "beta_hat",
"stde", "logLik", "AIC", "BIC", "EM_iterations")
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.