Description Usage Arguments Details Value Author(s) Source Examples
RunPennCNV: Run the pennCNV algorithm.
1 2 3 4 5 6 7 | RunPennCNV(PathRawData = "~/CNVs/MockData/PKU/Data", MINNumSNPs = 20,
Pattern = ".*Mock.*\\.tab$", Cores = 20, Skip = 0,
Normalization = FALSE, PFB = "NO",
HMM = "/media/NeoScreen/NeSc_home/share/Programs/penncnv/lib/hhall.hmm",
Path2PennCNV = "/media/NeoScreen/NeSc_home/share/Programs/penncnv/",
penalty = 60, Quantile = TRUE, QSpline = TRUE, sd = 0.15,
PennCNVFormat = FALSE, RemoveTmpfiles = TRUE)
|
PathRawData: |
The path to the raw data files containing Log R Ratio (LRR) and B Allele Frequency (BAF) values. |
MINNumSNPs: |
Minimum number of SNPs per CNV, default = 20. |
Pattern: |
File pattern in the PathRawData. Example: "*.txt". |
Cores: |
Number of cores used; default = 20. |
Skip: |
Integer, the number of lines of the data file to be skipped before beginning to read the data, default = 0. |
Normalization: |
Unknown, default = FALSE. |
PFB: |
Vector population frequency 0 to 1 for each SNP in the array, default = NO. |
HMM: |
Unknown, default = Unknown. |
Path2PennCNV: |
The path to the pennCNV algorithm. |
Penalty: |
The coefficient of the penalty for degrees of freedom in the GCV criterion. From smooth.spline stats, default = 60. |
Quantile: |
Logical, if quantile normalization should be applied or not, default = TRUE. |
QSpline: |
Logical, if a cubic smoothing spline should be used to normalize the data, default = TRUE. |
Sd: |
numeric, LRR standard deviation (sd) for the quantile nomarlization, default = 0.15. |
PennCNVFormat: |
Unknown, default = FALSE. |
RemoveTmpfiles: |
Unknown, default = TRUE. |
Specifically designed to handle noisy data from amplified DNA on phenylketonuria (PKU) cards. The function is a pipeline using many subfunctions.
Data frame with predicted CNVs.
Marcelo Bertalan, Louise K. Hoeffding.
1 | Unknown.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.