#' @name .BVAR_linear_wrapper
#' @noRd
#' @importFrom abind adrop
#' @importFrom utils capture.output
.BVAR_linear_wrapper <- function(Yraw, prior, plag, draws, burnin, cons, trend, SV, thin, default_hyperpara, Ex, applyfun, cores){
class(Yraw) <- "numeric"
prior_in <- ifelse(prior=="MN",1,ifelse(prior=="SSVS",2,ifelse(prior=="NG",3,NA)))
if(default_hyperpara[["a_log"]]) default_hyperpara["a_start"] <- 1/log(ncol(Yraw))
if(!is.na(prior_in)){
if(!default_hyperpara$use_R){
invisible(capture.output(
bvar<-BVAR_linear(Y_in=Yraw,p_in=plag,draws_in=draws,burnin_in=burnin,cons_in=cons,trend_in=trend,sv_in=SV,thin_in=thin,prior_in=prior_in,hyperparam_in=default_hyperpara,Ex_in=Ex)
,type="message"))
if(is(bvar,"try-error")){
bvar<-.BVAR_linear_R(Y_in=Yraw,p_in=plag,draws_in=draws,burnin_in=burnin,cons_in=cons,trend_in=trend,sv_in=SV,thin_in=thin,prior_in=prior_in,hyperparam_in=default_hyperpara,Ex_in=Ex)
}
}else{
bvar<-.BVAR_linear_R_chan(Y_in=Yraw,p_in=plag,draws_in=draws,burnin_in=burnin,cons_in=cons,trend_in=trend,sv_in=SV,thin_in=thin,prior_in=prior_in,hyperparam_in=default_hyperpara,Ex_in=Ex)
}
}else if(prior=="NC"){
bvar <- bvar_natural_conjugate(Y_in=Yraw,p_in=plag,draws_in=draws,cons_in=cons,trend_in=trend,thin_in=thin,hyperparam_in=default_hyperpara,Ex_in=Ex,applyfun=applyfun,cores=cores)
}
#------------------------------------------------ get data ----------------------------------------#
Y <- bvar$Y; colnames(Y) <- colnames(Yraw); X <- bvar$X
M <- ncol(Y); bigT <- nrow(Y); K <- ncol(X)
if(!is.null(Ex)) Mex <- ncol(Ex)
xnames <- paste(rep("Ylag",M),rep(seq(1,plag),each=M),sep="")
if(!is.null(Ex)) xnames <- c(xnames,paste(rep("Tex",Mex)))
if(cons) xnames <- c(xnames,"cons")
if(trend) xnames <- c(xnames,"trend")
colnames(X) <- xnames
#-----------------------------------------get containers ------------------------------------------#
A_store <- bvar$A_store; dimnames(A_store)[[2]] <- colnames(X); dimnames(A_store)[[3]] <- colnames(Y)
# splitting up stores
dims <- dimnames(A_store)[[2]]
a0store <- a1store <- Exstore <- NULL
if(cons) {
a0store <- adrop(A_store[,which(dims=="cons"),,drop=FALSE],drop=2)
}
if(trend){
a1store <- adrop(A_store[,which(dims=="trend"),,drop=FALSE],drop=2)
}
if(!is.null(Ex)){
Exstore <- A_store[,which(dims=="Tex"),,drop=FALSE]
}
Phistore <- NULL
for(jj in 1:plag){
Phistore[[jj]] <- A_store[,which(dims==paste("Ylag",jj,sep="")),,drop=FALSE]
}
S_store <- array(NA, c(draws/thin,bigT,M,M)); dimnames(S_store) <- list(NULL,NULL,colnames(Y),colnames(Y))
if(prior%in%c("MN","SSVS","NG")){
L_store <- bvar$L_store
for(irep in 1:(draws/thin)){
for(tt in 1:bigT){
if(M>1){
S_store[irep,tt,,] <- L_store[irep,,]%*%diag(exp(bvar$Sv_store[irep,tt,]))%*%t(L_store[irep,,])
}else{
S_store[irep,tt,,] <- L_store[irep,,]%*%exp(bvar$Sv_store[irep,tt,])%*%t(L_store[irep,,])
}
}
}
Smed_store <- apply(S_store,c(1,3,4),median)
if(SV){
vola_store <- bvar$Sv_store; dimnames(vola_store) <- list(NULL,NULL,colnames(Y))
pars_store <- bvar$pars_store; dimnames(pars_store) <- list(NULL,c("mu","phi","sigma","latent0"),colnames(Y))
vola_post <- apply(vola_store,c(2,3),median); dimnames(vola_post) <- list(NULL,colnames(Y))
pars_post <- apply(pars_store,c(2,3),median); dimnames(pars_post) <- list(c("mu","phi","sigma","latent0"),colnames(Y))
}else{
vola_store <- bvar$Sv_store; pars_store <- NULL;
vola_post <- apply(vola_store,c(2,3),median); pars_post <- NULL
}
}else if(prior=="NC"){
Smed_store <- bvar$S_store
L_store <- array(NA,c(draws/thin,M,M))
vola_store <- array(NA,c(draws/thin,bigT,M))
for(irep in 1:(draws/thin)){
for(tt in 1:bigT){
S_store[irep,tt,,] <- bvar$S_store[irep,,]
}
}
L_store <- NULL
theta_store <- NULL
vola_store <- NULL
pars_store <- NULL
vola_post <- NULL
pars_post <- NULL
}
theta_store <- bvar$theta_store; dimnames(theta_store)[[2]] <- colnames(X); dimnames(theta_store)[[3]] <- colnames(Y)
res_store <- bvar$res_store; dimnames(res_store) <- list(NULL,NULL,colnames(Y))
# MN
if(prior=="MN"){
shrink_store <- bvar$shrink_store; dimnames(shrink_store) <- list(NULL,c("shrink1","shrink2"))
shrink_post <- apply(shrink_store,2,median)
}else{
shrink_store <- shrink_post <- NULL
}
# SSVS
if(prior=="SSVS"){
gamma_store <- bvar$gamma_store; dimnames(gamma_store) <- list(NULL,colnames(X),colnames(Y))
omega_store <- bvar$omega_store; dimnames(omega_store) <- list(NULL,colnames(Y),colnames(Y))
PIP <- apply(gamma_store,c(2,3),mean)
PIP_omega <- apply(omega_store,c(2,3),mean)
}else{
gamma_store <- omega_store <- PIP <- PIP_omega <- NULL
}
# NG
if(prior=="NG"){
lambda2_store <- bvar$lambda2_store
tau_store <- bvar$tau_store
dimnames(lambda2_store) <- list(NULL,paste("lag",1:plag,sep="_"),c("endogenous","covariance"))
dimnames(lambda2_store) <- list(NULL,paste("lag",1:plag,sep="_"),c("endogenous","covariance"))
lambda2_post <- apply(lambda2_store,c(2,3),median)
tau_post <- apply(tau_store,c(2,3),median)
}else{
lambda2_store <- tau_store <- lambda2_post <- tau_post <- NULL
}
store <- list(A_store=A_store,a0store=a0store,a1store=a1store,Phistore=Phistore,Exstore=Exstore,S_store=S_store,Smed_store=Smed_store,
L_store=L_store,theta_store=theta_store,vola_store=vola_store,pars_store=pars_store,res_store=res_store,
shrink_store=shrink_store,gamma_store=gamma_store,omega_store=omega_store,lambda2_store=lambda2_store,tau_store=tau_store)
#------------------------------------ compute posteriors -------------------------------------------#
A_post <- apply(A_store,c(2,3),median)
S_post <- apply(S_store,c(2,3,4),median)
Sig <- apply(S_post,c(2,3),mean)/(bigT-K)
theta_post <- apply(theta_store,c(2,3),median)
res_post <- apply(res_store,c(2,3),median)
# splitting up posteriors
a0post <- a1post <- Expost <- NULL
if(cons) a0post <- A_post[which(dims=="cons"),,drop=FALSE]
if(trend) a1post <- A_post[which(dims=="trend"),,drop=FALSE]
if(!is.null(Ex)) Expost <- A_post[which(dims=="Tex"),,drop=FALSE]
Phipost <- NULL
for(jj in 1:plag){
Phipost <- rbind(Phipost,A_post[which(dims==paste("Ylag",jj,sep="")),,drop=FALSE])
}
post <- list(A_post=A_post,a0post=a0post,a1post=a1post,Phipost=Phipost,Expost=Expost,S_post=S_post,Sig=Sig,theta_post=theta_post,
vola_post=vola_post,pars_post=pars_post,res_post=res_post,shrink_post=shrink_post,PIP=PIP,PIP_omega=PIP_omega,
lambda2_post=lambda2_post,tau_post=tau_post)
return(list(Y=Y,X=X,store=store,post=post))
}
#' @name .BVAR_linear_R
#' @importFrom stochvol svsample_fast_cpp specify_priors default_fast_sv
#' @importFrom MASS ginv mvrnorm
#' @importFrom methods is
#' @importFrom stats rnorm rgamma runif dnorm
#' @noRd
.BVAR_linear_R <- function(Y_in,p_in,draws_in,burnin_in,cons_in,trend_in,sv_in,thin_in,quiet_in,prior_in,hyperparam_in,Ex_in){
#----------------------------------------INPUTS----------------------------------------------------#
Yraw <- Y_in
p <- p_in
Traw <- nrow(Yraw)
M <- ncol(Yraw)
K <- M*p
Ylag <- .mlag(Yraw,p)
nameslags <- NULL
for (ii in 1:p) nameslags <- c(nameslags,rep(paste("Ylag",ii,sep=""),M))
colnames(Ylag) <- nameslags
texo <- FALSE; Mex <- 0; Exraw <- NULL
if(!is.null(Ex_in)){
Exraw <- Ex_in; Mex <- ncol(Exraw)
texo <- TRUE
colnames(Exraw) <- rep("Tex",Mex)
}
X <- cbind(Ylag,Exraw)
X <- X[(p+1):nrow(X),,drop=FALSE]
Y <- Yraw[(p+1):Traw,,drop=FALSE]
bigT <- nrow(X)
cons <- cons_in
if(cons){
X <- cbind(X,1)
colnames(X)[ncol(X)] <- "cons"
}
trend <- trend_in
if(trend){
X <- cbind(X,seq(1,bigT))
colnames(X)[ncol(X)] <- "trend"
}
k <- ncol(X)
n <- k*M
v <- (M*(M-1))/2
#---------------------------------------------------------------------------------------------------------
# HYPERPARAMETERS
#---------------------------------------------------------------------------------------------------------
hyperpara <- hyperparam_in
prior <- prior_in
sv <- sv_in
prmean <- hyperpara$prmean
a_1 <- hyperpara$a_1
b_1 <- hyperpara$b_1
# SV
Bsigma <- hyperpara$Bsigma
a0 <- hyperpara$a0
b0 <- hyperpara$b0
bmu <- hyperpara$bmu
Bmu <- hyperpara$Bmu
# prior == 1: MN
shrink1 <- hyperpara$shrink1
shrink2 <- hyperpara$shrink2
shrink3 <- hyperpara$shrink3
# prior == 2: SSVS
tau00 <- hyperpara$tau0
tau11 <- hyperpara$tau1
p_i <- hyperpara$p_i
kappa0 <- hyperpara$kappa0
kappa1 <- hyperpara$kappa1
q_ij <- hyperpara$q_ij
# prior == 3: NG
d_lambda <- hyperpara$d_lambda
e_lambda <- hyperpara$e_lambda
a_start <- hyperpara$a_start
sample_A <- hyperpara$sample_A
#---------------------------------------------------------------------------------------------------------
# OLS Quantitites
#---------------------------------------------------------------------------------------------------------
XtXinv <- try(solve(crossprod(X)),silent=TRUE)
if(is(XtXinv,"try-error")) XtXinv <- ginv(crossprod(X))
A_OLS <- XtXinv%*%(t(X)%*%Y)
E_OLS <- Y - X%*%A_OLS
#a_OLS <- as.vector(A_OLS)
#SSE <- t((Y - X%*%A_OLS))%*%(Y - X%*%A_OLS)
SIGMA_OLS <- crossprod(E_OLS)/(bigT-k)
#IXY <- kronecker(diag(M),(t(X)%*%Y))
#---------------------------------------------------------------------------------------------------------
# Initial Values
#---------------------------------------------------------------------------------------------------------
A_draw <- A_OLS
SIGMA <- array(SIGMA_OLS, c(M,M,bigT))
Em <- Em_str <- E_OLS
L_draw <- diag(M)
#---------------------------------------------------------------------------------------------------------
# PRIORS
#---------------------------------------------------------------------------------------------------------
# Priors on VAR coefs
#-----------------------------
# prior mean
A_prior <- matrix(0,k,M)
diag(A_prior) <- prmean
a_prior <- as.vector(A_prior)
# prior variance
theta <- matrix(10,k,M)
# MN stuff
accept1 <- accept2 <- 0
scale1 <- scale2 <- .43
sigma_sq <- matrix(0,M,1) #vector which stores the residual variance
for (i in 1:M){
Ylag_i <- .mlag(Yraw[,i],p)
Ylag_i <- Ylag_i[(p+1):nrow(Ylag_i),,drop=FALSE]
Y_i <- Yraw[(p+1):nrow(Yraw),i,drop=FALSE]
Ylag_i <- cbind(Ylag_i,seq(1,nrow(Y_i)))
alpha_i <- solve(crossprod(Ylag_i))%*%crossprod(Ylag_i,Y_i)
sigma_sq[i,1] <- (1/(nrow(Y_i)-p-1))*t(Y_i-Ylag_i%*%alpha_i)%*%(Y_i-Ylag_i%*%alpha_i)
}
if(prior==1){
theta <- .get_V(k=k,M=M,p=p,a_bar_1=shrink1,a_bar_2=shrink2,a_bar_3=shrink3,
sigma_sq=sigma_sq,cons=cons,trend=trend)
}
# SSVS stuff
gamma <- matrix(1,k,M)
sigma_alpha <- sqrt(diag(kronecker(SIGMA_OLS,XtXinv)))
tau0 <- matrix(NA, k, M); tau1 <- matrix(NA, k, M)
ii <- 1
for(mm in 1:M){
for(kk in 1:k){
tau0[kk,mm] <- tau00*sigma_alpha[ii]
tau1[kk,mm] <- tau11*sigma_alpha[ii]
ii <- ii+1
}
}
# NG stuff
lambda2_A <- matrix(0.01,p,1)
A_tau <- matrix(a_start,p,1)
colnames(A_tau) <- colnames(lambda2_A) <- "endo"
rownames(A_tau) <- rownames(lambda2_A) <- paste("lag.",seq(1,p),sep="")
A_tuning <- matrix(.43,p,1)
A_accept <- matrix(0,p,1)
#------------------------------------
# Priors on coefs in H matrix of VCV
#------------------------------------
# prior mean
l_prior <- matrix(0,M,M)
# prior variance
L_prior <- matrix(10,M,M)
L_prior[upper.tri(L_prior)] <- 0; diag(L_prior) <- 0
# SSVS
omega <- matrix(1,M,M)
omega[upper.tri(omega)] <- 0; diag(omega) <- 0
# NG
lambda2_L <- 0.01
L_tau <- a_start
L_accept <- 0
L_tuning <- .43
#------------------------------------
# SV quantities
#------------------------------------
Sv_draw <- matrix(-3,bigT,M)
svdraw <- list(para=c(mu=-10,phi=.9,sigma=.2),latent=rep(-3,bigT))
svl <- list()
for (jj in 1:M) svl[[jj]] <- svdraw
pars_var <- matrix(c(-3,.9,.2,-3),4,M,dimnames=list(c("mu","phi","sigma","latent0"),NULL))
hv <- svdraw$latent
para <- list(mu=-3,phi=.9,sigma=.2)
Sv_priors <- specify_priors(mu=sv_normal(mean=bmu, sd=Bmu), phi=sv_beta(a0,b0), sigma2=sv_gamma(shape=0.5,rate=1/(2*Bsigma)))
eta <- list()
#---------------------------------------------------------------------------------------------------------
# SAMPLER MISCELLANEOUS
#---------------------------------------------------------------------------------------------------------
nsave <- draws_in
nburn <- burnin_in
ntot <- nsave+nburn
# thinning
thin <- thin_in
count <- 0
thindraws <- nsave/thin
thin.draws <- seq(nburn+1,ntot,by=thin)
#---------------------------------------------------------------------------------------------------------
# STORAGES
#---------------------------------------------------------------------------------------------------------
A_store <- array(NA,c(thindraws,k,M))
L_store <- array(NA,c(thindraws,M,M))
res_store <- array(NA,c(thindraws,bigT,M))
# SV
Sv_store <- array(NA,c(thindraws,bigT,M))
pars_store <- array(NA,c(thindraws,4,M))
# MN
shrink_store <- array(NA,c(thindraws,2))
# SSVS
gamma_store <- array(NA,c(thindraws,k,M))
omega_store <- array(NA,c(thindraws,M,M))
# NG
theta_store <- array(NA,c(thindraws,k,M))
lambda2_store<- array(NA,c(thindraws,p,2))
tau_store <- array(NA,c(thindraws,p,2))
#---------------------------------------------------------------------------------------------------------
# MCMC LOOP
#---------------------------------------------------------------------------------------------------------
for (irep in 1:ntot){
#----------------------------------------------------------------------------
# Step 1: Sample coefficients
for (mm in 1:M){
if (mm==1){
Y.i <- Y[,mm]*exp(-0.5*Sv_draw[,mm])
X.i <- X*exp(-0.5*Sv_draw[,mm])
V_post <- try(chol2inv(chol(crossprod(X.i)+diag(1/theta[,mm]))),silent=TRUE)
if (is(V_post,"try-error")) V_post <- ginv(crossprod(X.i)+diag(1/theta[,mm]))
A_post <- V_post%*%(crossprod(X.i,Y.i)+diag(1/theta[,mm])%*%A_prior[,mm])
A.draw.i <- try(A_post+t(chol(V_post))%*%rnorm(ncol(X.i)),silent=TRUE)
if (is(A.draw.i,"try-error")) A.draw.i <- mvrnorm(1,A_post,V_post)
A_draw[,mm] <- A.draw.i
Em[,mm] <- Em_str[,mm] <- Y[,mm]-X%*%A.draw.i
}else{
Y.i <- Y[,mm]*exp(-0.5*Sv_draw[,mm])
X.i <- cbind(X,Em[,1:(mm-1)])*exp(-0.5*Sv_draw[,mm])
V_post <- try(chol2inv(chol((crossprod(X.i)+diag(1/c(theta[,mm],L_prior[mm,1:(mm-1)]))))),silent=TRUE)
if (is(V_post,"try-error")) V_post <- ginv((crossprod(X.i)+diag(1/c(theta[,mm],L_prior[mm,1:(mm-1)]))))
A_post <- V_post%*%(crossprod(X.i,Y.i)+diag(1/c(theta[,mm],L_prior[mm,1:(mm-1)]))%*%c(A_prior[,mm],l_prior[mm,1:(mm-1)]))
A.draw.i <- try(A_post+t(chol(V_post))%*%rnorm(ncol(X.i)),silent=TRUE)
if (is(A.draw.i,"try-error")) A.draw.i <- mvrnorm(1,A_post,V_post)
A_draw[,mm] <- A.draw.i[1:ncol(X)]
Em[,mm] <- Y[,mm]-X%*%A.draw.i[1:ncol(X)]
Em_str[,mm] <- Y[,mm]-X%*%A.draw.i[1:ncol(X)]-Em[,1:(mm-1),drop=FALSE]%*%A.draw.i[(ncol(X)+1):ncol(X.i),drop=FALSE]
L_draw[mm,1:(mm-1)] <- A.draw.i[(ncol(X)+1):ncol(X.i)]
}
}
rownames(A_draw) <- colnames(X)
#----------------------------------------------------------------------------
# Step 2: different shrinkage prior setups
# MN
if(prior==1){
#Step for the first shrinkage parameter (own lags)
shrink1.prop <- exp(rnorm(1,0,scale1))*shrink1
if(shrink1.prop<1e-17) shrink1.prop <- 1e-17
if(shrink1.prop>1e+17) shrink1.prop <- 1e+17
theta1.prop <- .get_V(k=k,M=M,p=p,a_bar_1=shrink1.prop,a_bar_2=shrink2,a_bar_3=shrink3,a_bar_4=shrink4,sigma_sq=sigma_sq)
post1.prop<-sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta1.prop)),log=TRUE))+dgamma(shrink1.prop,0.01,0.01,log=TRUE)
post1.prop<-post1.prop+log(shrink1.prop) # correction term
post1 <- sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta)),log=TRUE))+dgamma(shrink1,0.01,0.01,log=TRUE)
post1 <- post1+log(shrink1) # correction term
if ((post1.prop-post1)>log(runif(1,0,1))){
shrink1 <- shrink1.prop
theta <- theta1.prop
accept1 <- accept1+1
}
#Step for the second shrinkage parameter (cross equation)
shrink2.prop <- exp(rnorm(1,0,scale2))*shrink2
if(shrink2.prop<1e-17) shrink2.prop <- 1e-17
if(shrink2.prop>1e+17) shrink2.prop <- 1e+17
theta2.prop <- .get_V(k=k,M=M,p=p,a_bar_1=shrink1,a_bar_2=shrink2.prop,a_bar_3=shrink3,a_bar_4=shrink4,sigma_sq=sigma_sq)
post2.prop <- sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta2.prop)),log=TRUE))+dgamma(shrink2.prop,0.01,0.01,log=TRUE)
post2.prop <- post2.prop + log(shrink2.prop) # correction term
post2 <- sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta)),log=TRUE))+dgamma(shrink2,0.01,0.01,log=TRUE)
post2 <- post2 + log(shrink2) # correction term
if ((post2.prop-post2)>log(runif(1,0,1))){
shrink2 <- shrink2.prop
theta <- theta2.prop
accept2 <- accept2+1
}
if (irep<(0.5*nburn)){
if ((accept1/irep)<0.15) scale1 <- 0.99*scale1
if ((accept1/irep)>0.3) scale1 <- 1.01*scale1
if ((accept2/irep)<0.15) scale2 <- 0.99*scale2
if ((accept2/irep)>0.3) scale2 <- 1.01*scale2
}
}
# SSVS
if(prior==2){
for(mm in 1:M){
for(kk in 1:k){
u_i1 <- dnorm(A_draw[kk,mm],A_prior[kk,mm],tau0[kk,mm]) * p_i
u_i2 <- dnorm(A_draw[kk,mm],A_prior[kk,mm],tau1[kk,mm]) * (1-p_i)
gst <- u_i1/(u_i1 + u_i2)
if(gst=="NaN") gst <- 0
gamma[kk,mm] <- .bernoulli(gst)
gamma[is.na(gamma)] <- 1
if (gamma[kk,mm] == 0){
theta[kk,mm] <- tau0[kk,mm]^2
}else if (gamma[kk,mm] == 1){
theta[kk,mm] <- tau1[kk,mm]^2
}
}
}
for(mm in 2:M){
for(ii in 1:(mm-1)){
u_ij1 <- dnorm(L_draw[mm,ii],l_prior[mm,ii],kappa0) * q_ij
u_ij2 <- dnorm(L_draw[mm,ii],l_prior[mm,ii],kappa1) * (1-q_ij)
ost <- u_ij1/(u_ij1 + u_ij2)
if(is.na(ost)) ost <- 1
omega[mm,ii] <- .bernoulli(ost)
if (is.na(omega[mm,ii])) omega[mm,ii] <- 1
if(omega[mm,ii]==1){
L_prior[mm,ii] <- kappa1^2
}else{
L_prior[mm,ii] <- kappa0^2
}
}
}
}
# NG
if(prior==3){
# Normal-Gamma for Covariances
lambda2_L <- rgamma(1,d_lambda+L_tau*v,e_lambda+L_tau/2*sum(L_prior[lower.tri(L_prior)]))
#Step VI: Sample the prior scaling factors for covariances from GIG
for(mm in 2:M){
for(ii in 1:(mm-1)){
L_prior[mm,ii] <- do_rgig1(lambda=L_tau-0.5, chi=(L_draw[mm,ii]-l_prior[mm,ii])^2, psi=L_tau*lambda2_L)
}
}
if(sample_A){
#Sample L_tau through a simple RWMH step
L_tau_prop <- exp(rnorm(1,0,L_tuning))*L_tau
post_L_tau_prop <- .atau_post(atau=L_tau_prop, thetas=L_prior[lower.tri(L_prior)], k=v, lambda2=lambda2_L)
post_L_tau_old <- .atau_post(atau=L_tau, thetas=L_prior[lower.tri(L_prior)], k=v, lambda2=lambda2_L)
post.diff <- post_L_tau_prop-post_L_tau_old
post.diff <- ifelse(is.nan(post.diff),-Inf,post.diff)
if (post.diff > log(runif(1,0,1))){
L_tau <- L_tau_prop
L_accept <- L_accept+1
}
if (irep<(0.5*nburn)){
if ((L_accept/irep)>0.3) L_tuning <- 1.01*L_tuning
if ((L_accept/irep)<0.15) L_tuning <- 0.99*L_tuning
}
}
# Normal-Gamma for endogenous variables
for (ss in 1:p){
slct.i <- which(rownames(A_draw)==paste("Ylag",ss,sep=""))
A.lag <- A_draw[slct.i,,drop=FALSE]
A.prior <- A_prior[slct.i,,drop=FALSE]
theta.lag <- theta[slct.i,,drop=FALSE]
M.end <- nrow(A.lag)
if (ss==1){
lambda2_A[ss,1] <- rgamma(1,d_lambda+A_tau[ss,1]*M^2,e_lambda+A_tau[ss,1]/2*sum(theta.lag))
}else{
lambda2_A[ss,1] <- rgamma(1,d_lambda+A_tau[ss,1]*M^2,e_lambda+A_tau[ss,1]/2*prod(lambda2_A[1:(ss-1),1])*sum(theta.lag))
}
for (jj in 1:M){
for (ii in 1:M){
theta.lag[jj,ii] <- do_rgig1(lambda=A_tau[ss,1]-0.5,
chi=(A.lag[jj,ii]-A.prior[jj,ii])^2,
psi=A_tau[ss,1]*prod(lambda2_A[1:ss,1]))
}
}
theta[slct.i,] <- theta.lag
theta[theta<1e-8] <- 1e-8
#TO BE MODIFIED
if (sample_A){
#Sample a_tau through a simple RWMH step (on-line tuning of the MH scaling within the first 50% of the burn-in phase)
A_tau_prop <- exp(rnorm(1,0,A_tuning[ss,1]))*A_tau[ss,1]
post_A_tau_prop <- .atau_post(atau=A_tau_prop, thetas=as.vector(theta.lag), lambda2=prod(lambda2_A[1:ss,1]), k=length(theta.lag))
post_A_tau_old <- .atau_post(atau=A_tau[ss,1], thetas=as.vector(theta.lag), lambda2=prod(lambda2_A[1:ss,1]), k=length(theta.lag))
post.diff <- post_A_tau_prop-post_A_tau_old
post.diff <- ifelse(is.nan(post.diff),-Inf,post.diff)
if (post.diff > log(runif(1,0,1))){
A_tau[ss,1] <- A_tau_prop
A_accept[ss,1] <- A_accept[ss,1]+1
}
if (irep<(0.5*nburn)){
if ((A_accept[ss,1]/irep)>0.3) A_tuning[ss,1] <- 1.01*A_tuning[ss,1]
if ((A_accept[ss,1]/irep)<0.15) A_tuning[ss,1] <- 0.99*A_tuning[ss,1]
}
}
}
}
#----------------------------------------------------------------------------
# Step 3: Sample variances
if (sv){
for (jj in 1:M){
para <- as.list(pars_var[,jj])
para$nu = Inf; para$rho=0; para$beta<-0
svdraw <- svsample_fast_cpp(y=Em_str[,jj], draws=1, burnin=0, designmatrix=matrix(NA_real_),
priorspec=Sv_priors, thinpara=1, thinlatent=1, keeptime="all",
startpara=para, startlatent=Sv_draw[,jj],
keeptau=FALSE, print_settings=list(quiet=TRUE, n_chains=1, chain=1),
correct_model_misspecification=FALSE, interweave=TRUE, myoffset=0,
fast_sv=default_fast_sv)
svl[[jj]] <- svdraw
h_ <- exp(svdraw$latent[1,])
para$mu <- svdraw$para[1,"mu"]
para$phi <- svdraw$para[1,"phi"]
para$sigma <- svdraw$para[1,"sigma"]
para$latent0 <- svdraw$latent0[1,"h_0"]
pars_var[,jj] <- unlist(para[c("mu","phi","sigma","latent0")])
Sv_draw[,jj] <- log(h_)
}
}else{
for (jj in 1:M){
S_1 <- a_1+bigT/2
S_2 <- b_1+crossprod(Em_str[,jj])/2
sig_eta <- 1/rgamma(1,S_1,S_2)
Sv_draw[,jj] <- log(sig_eta)
}
}
#----------------------------------------------------------------------------
# Step 4: store draws
if(irep %in% thin.draws){
count <- count+1
A_store[count,,] <- A_draw
L_store[count,,] <- L_draw
res_store[count,,] <- Y-X%*%A_draw
# SV
Sv_store[count,,] <- Sv_draw
pars_store[count,,] <- pars_var
# MN
shrink_store[count,] <- c(shrink1,shrink2)
# SSVS
gamma_store[count,,] <- gamma
omega_store[count,,] <- omega
# NG
theta_store[count,,] <- theta
lambda2_store[count,1,2] <- lambda2_L
lambda2_store[count,,1] <- lambda2_A
tau_store[count,1,2] <- L_tau
tau_store[count,,1] <- A_tau
}
}
#---------------------------------------------------------------------------------------------------------
# END ESTIMATION
#---------------------------------------------------------------------------------------------------------
dimnames(A_store)=list(NULL,colnames(X),colnames(A_OLS))
ret <- list(Y=Y,X=X,A_store=A_store,L_store=L_store,Sv_store=Sv_store,shrink_store=shrink_store,gamma_store=gamma_store,omega_store=omega_store,theta_store=theta_store,lambda2_store=lambda2_store,tau_store=tau_store,pars_store=pars_store,res_store=res_store)
return(ret)
}
#' @name .BVAR_natural_conjugate
#' @importFrom stats rgamma rnorm quantile rWishart
#' @importFrom mvnfast dmvn
#' @importFrom mvtnorm rmvnorm dmvnorm rmvt
#' @importFrom MASS ginv
#' @importFrom methods is
#' @noRd
bvar_natural_conjugate <- function(Y_in,p_in,draws_in,cons_in,trend_in,thin_in,quiet_in,hyperparam_in,Ex_in,applyfun,cores) {
#----------------------------------------INPUTS----------------------------------------------------#
Yraw <- Y_in
p <- p_in
Traw <- nrow(Yraw)
M <- ncol(Yraw)
K <- M*p
Ylag <- .mlag(Yraw,p)
nameslags <- NULL
for (ii in 1:p) nameslags <- c(nameslags,rep(paste("Ylag",ii,sep=""),M))
colnames(Ylag) <- nameslags
texo <- FALSE; Mex <- 0; Exraw <- NULL
if(!is.null(Ex_in)){
Exraw <- Ex_in; Mex <- ncol(Exraw)
texo <- TRUE
colnames(Exraw) <- rep("Tex",Mex)
}
X <- cbind(Ylag,Exraw)
X <- X[(p+1):nrow(X),,drop=FALSE]
Y <- Yraw[(p+1):Traw,,drop=FALSE]
bigT <- nrow(X)
cons <- cons_in
if(cons){
X <- cbind(X,1)
colnames(X)[ncol(X)] <- "cons"
}
trend <- trend_in
if(trend){
X <- cbind(X,seq(1,bigT))
colnames(X)[ncol(X)] <- "trend"
}
k <- ncol(X)
n <- k*M
v <- (M*(M-1))/2
#---------------------------------------------------------------------------------------------------------
# HYPERPARAMETERS
#---------------------------------------------------------------------------------------------------------
hyperpara <- hyperparam_in
c <- hyperpara$c
prmean <- hyperpara$prmean
Multiplier<- hyperpara$Multiplier
#--------------------------Initialize Gibbs sampler--------------------------------#
A_OLS <- try(solve(crossprod(X)) %*% crossprod(X,Y),silent=TRUE)
if(is(A_OLS,"try-error")) A_OLS <- ginv(crossprod(X)) %*% crossprod(X,Y)
S_OLS <- crossprod(Y - X %*% A_OLS)
#----------------------------PRIORS------------------------------------------------#
# prior mean for autoregressive parameters
A_prior <- matrix(0,k,M)
A_prior[1:M,1:M] <- diag(M)*prmean
# prior variance for autoregressive coefficients
theta_prior <- diag(k)*c
theta_priorinv <- diag(1/diag(theta_prior))
# prior degrees of scaling
v_prior <- 1
# prior scaling matrix
S_prior <- (1/c)*diag(M)
#---------------------POSTERIOR MOMENTS--------------------------------------------#
# posterior of coefficients
V_post <- solve(crossprod(X) + theta_priorinv)
# A_post <- V_post %*% (crossprod(X)%*%A_OLS + V_priorinv%*%A_prior)
A_post <- V_post %*% (crossprod(X,Y) + theta_priorinv%*%A_prior)
# posterior of variance
S_post <- S_OLS + S_prior + t(X%*%A_OLS)%*%X%*%A_OLS + t(A_prior)%*%theta_priorinv%*%A_prior - t(A_post)%*%(theta_priorinv + crossprod(X))%*%A_post
v_post <- v_prior + bigT
# posterior of coefficient variance for t-distribution
bigVpost <- kronecker(S_post, V_post)/(v_post-M-1)
#---------------------------------------------------------------------------------------------------------
# SAMPLER MISCELLANEOUS
#---------------------------------------------------------------------------------------------------------
draws <- draws_in
# thinning
thin <- thin_in
count <- 0
thindraws <- draws/thin
#---------------------------------------------------------------------------------------------------------
# STORAGES
#---------------------------------------------------------------------------------------------------------
A_store <- array(NA,c(thindraws,k,M))
theta_store <- array(NA,c(thindraws,k,M))
res_store <- array(NA,c(thindraws,bigT,M))
S_store <- array(NA,c(thindraws,M,M))
#-------------------MONTE CARLO SIMULATION----------------------------------------#
storage <- applyfun(1:thindraws,function(irep){
# draw coefficients
Sinv_draw <- matrix(rWishart(1,v_post,solve(S_post)),M,M)
S_draw <- solve(Sinv_draw)
A_draw <- matrix(mvtnorm::rmvt(1, sigma=bigVpost, df=v_post, delta=as.vector(A_post)),k,M)
res_draw <- Y - X%*%A_draw
return(list(A_draw=A_draw,S_draw=S_draw,res_draw=res_draw))
})
# save everything
for(irep in 1:thindraws){
A_store[irep,,] <- storage[[irep]]$A_draw
S_store[irep,,] <- storage[[irep]]$S_draw
res_store[irep,,] <- storage[[irep]]$res
theta_store[irep,,] <- matrix(rep(diag(theta_prior),M),k,M)
}
#---------------------------------------------------------------------------------------------------------
# END ESTIMATION
#---------------------------------------------------------------------------------------------------------
dimnames(A_store)=list(NULL,colnames(X),colnames(A_OLS))
ret <- list(Y=Y,X=X,A_store=A_store,S_store=S_store,theta_store=theta_store,res_store=res_store)
return(ret)
}
#' @name .BVAR_linear_R
#' @importFrom stochvol svsample_fast_cpp specify_priors default_fast_sv
#' @importFrom MASS ginv mvrnorm
#' @importFrom methods is
#' @importFrom stats rnorm rgamma runif dnorm
#' @noRd
.BVAR_linear_R_chan <- function(Y_in,p_in,draws_in,burnin_in,cons_in,trend_in,sv_in,thin_in,quiet_in,prior_in,hyperparam_in,Ex_in){
#----------------------------------------INPUTS----------------------------------------------------#
Yraw <- Y_in
p <- p_in
Traw <- nrow(Yraw)
M <- ncol(Yraw)
K <- M*p
Ylag <- .mlag(Yraw,p)
nameslags <- NULL
for (ii in 1:p) nameslags <- c(nameslags,rep(paste("Ylag",ii,sep=""),M))
colnames(Ylag) <- nameslags
texo <- FALSE; Mex <- 0; Exraw <- NULL
if(!is.null(Ex_in)){
Exraw <- Ex_in; Mex <- ncol(Exraw)
texo <- TRUE
colnames(Exraw) <- rep("Tex",Mex)
}
X <- cbind(Ylag,Exraw)
X <- X[(p+1):nrow(X),,drop=FALSE]
Y <- Yraw[(p+1):Traw,,drop=FALSE]
bigT <- nrow(X)
cons <- cons_in
if(cons){
X <- cbind(X,1)
colnames(X)[ncol(X)] <- "cons"
}
trend <- trend_in
if(trend){
X <- cbind(X,seq(1,bigT))
colnames(X)[ncol(X)] <- "trend"
}
k <- ncol(X)
n <- k*M
v <- (M*(M-1))/2
#---------------------------------------------------------------------------------------------------------
# HYPERPARAMETERS
#---------------------------------------------------------------------------------------------------------
hyperpara <- hyperparam_in
prior <- prior_in
sv <- sv_in
prmean <- hyperpara$prmean
a_1 <- hyperpara$a_1
b_1 <- hyperpara$b_1
# SV
Bsigma <- hyperpara$Bsigma
a0 <- hyperpara$a0
b0 <- hyperpara$b0
bmu <- hyperpara$bmu
Bmu <- hyperpara$Bmu
# prior == 1: MN
shrink1 <- hyperpara$shrink1
shrink2 <- hyperpara$shrink2
shrink3 <- hyperpara$shrink3
# prior == 2: SSVS
tau00 <- hyperpara$tau0
tau11 <- hyperpara$tau1
p_i <- hyperpara$p_i
kappa0 <- hyperpara$kappa0
kappa1 <- hyperpara$kappa1
q_ij <- hyperpara$q_ij
# prior == 3: NG
d_lambda <- hyperpara$d_lambda
e_lambda <- hyperpara$e_lambda
a_start <- hyperpara$a_start
sample_A <- hyperpara$sample_A
#---------------------------------------------------------------------------------------------------------
# OLS Quantitites
#---------------------------------------------------------------------------------------------------------
XtXinv <- try(solve(crossprod(X)),silent=TRUE)
if(is(XtXinv,"try-error")) XtXinv <- ginv(crossprod(X))
A_OLS <- XtXinv%*%(t(X)%*%Y)
E_OLS <- Y - X%*%A_OLS
#a_OLS <- as.vector(A_OLS)
#SSE <- t((Y - X%*%A_OLS))%*%(Y - X%*%A_OLS)
SIGMA_OLS <- crossprod(E_OLS)/(bigT-k)
#IXY <- kronecker(diag(M),(t(X)%*%Y))
#---------------------------------------------------------------------------------------------------------
# Initial Values
#---------------------------------------------------------------------------------------------------------
A_draw <- A_OLS
SIGMA <- array(SIGMA_OLS, c(M,M,bigT))
Em <- Em_str <- E_OLS
L_draw <- diag(M)
L_drawinv <- solve(L_draw)
#---------------------------------------------------------------------------------------------------------
# PRIORS
#---------------------------------------------------------------------------------------------------------
# Priors on VAR coefs
#-----------------------------
# prior mean
A_prior <- matrix(0,k,M)
diag(A_prior) <- prmean
a_prior <- as.vector(A_prior)
# prior variance
theta <- matrix(10,k,M)
# MN stuff
accept1 <- accept2 <- 0
scale1 <- scale2 <- .43
sigma_sq <- matrix(0,M,1) #vector which stores the residual variance
for (i in 1:M){
Ylag_i <- .mlag(Yraw[,i],p)
Ylag_i <- Ylag_i[(p+1):nrow(Ylag_i),,drop=FALSE]
Y_i <- Yraw[(p+1):nrow(Yraw),i,drop=FALSE]
Ylag_i <- cbind(Ylag_i,seq(1,nrow(Y_i)))
alpha_i <- solve(crossprod(Ylag_i))%*%crossprod(Ylag_i,Y_i)
sigma_sq[i,1] <- (1/(nrow(Y_i)-p-1))*t(Y_i-Ylag_i%*%alpha_i)%*%(Y_i-Ylag_i%*%alpha_i)
}
if(prior==1){
theta <- .get_V(k=k,M=M,p=p,a_bar_1=shrink1,a_bar_2=shrink2,a_bar_3=shrink3,
sigma_sq=sigma_sq,cons=cons,trend=trend)
}
# SSVS stuff
gamma <- matrix(1,k,M)
sigma_alpha <- sqrt(diag(kronecker(SIGMA_OLS,XtXinv)))
tau0 <- matrix(NA, k, M); tau1 <- matrix(NA, k, M)
ii <- 1
for(mm in 1:M){
for(kk in 1:k){
tau0[kk,mm] <- tau00*sigma_alpha[ii]
tau1[kk,mm] <- tau11*sigma_alpha[ii]
ii <- ii+1
}
}
# NG stuff
lambda2_A <- matrix(0.01,p,1)
A_tau <- matrix(a_start,p,1)
colnames(A_tau) <- colnames(lambda2_A) <- "endo"
rownames(A_tau) <- rownames(lambda2_A) <- paste("lag.",seq(1,p),sep="")
A_tuning <- matrix(.43,p,1)
A_accept <- matrix(0,p,1)
#------------------------------------
# Priors on coefs in H matrix of VCV
#------------------------------------
# prior mean
l_prior <- matrix(0,M,M)
# prior variance
L_prior <- matrix(10,M,M)
L_prior[upper.tri(L_prior)] <- 0; diag(L_prior) <- 0
# SSVS
omega <- matrix(1,M,M)
omega[upper.tri(omega)] <- 0; diag(omega) <- 0
# NG
lambda2_L <- 0.01
L_tau <- a_start
L_accept <- 0
L_tuning <- .43
#------------------------------------
# SV quantities
#------------------------------------
Sv_draw <- matrix(-3,bigT,M)
svdraw <- list(para=c(mu=-10,phi=.9,sigma=.2),latent=rep(-3,bigT))
svl <- list()
for (jj in 1:M) svl[[jj]] <- svdraw
pars_var <- matrix(c(-3,.9,.2,-3),4,M,dimnames=list(c("mu","phi","sigma","latent0"),NULL))
hv <- svdraw$latent
para <- list(mu=-3,phi=.9,sigma=.2)
Sv_priors <- specify_priors(mu=sv_normal(mean=bmu, sd=Bmu), phi=sv_beta(a0,b0), sigma2=sv_gamma(shape=0.5,rate=1/(2*Bsigma)))
eta <- list()
#---------------------------------------------------------------------------------------------------------
# SAMPLER MISCELLANEOUS
#---------------------------------------------------------------------------------------------------------
nsave <- draws_in
nburn <- burnin_in
ntot <- nsave+nburn
# thinning
thin <- thin_in
count <- 0
thindraws <- nsave/thin
thin.draws <- seq(nburn+1,ntot,by=thin)
#---------------------------------------------------------------------------------------------------------
# STORAGES
#---------------------------------------------------------------------------------------------------------
A_store <- array(NA,c(thindraws,k,M))
L_store <- array(NA,c(thindraws,M,M))
res_store <- array(NA,c(thindraws,bigT,M))
# SV
Sv_store <- array(NA,c(thindraws,bigT,M))
pars_store <- array(NA,c(thindraws,4,M))
# MN
shrink_store <- array(NA,c(thindraws,2))
# SSVS
gamma_store <- array(NA,c(thindraws,k,M))
omega_store <- array(NA,c(thindraws,M,M))
# NG
theta_store <- array(NA,c(thindraws,k,M))
lambda2_store<- array(NA,c(thindraws,p,2))
tau_store <- array(NA,c(thindraws,p,2))
#---------------------------------------------------------------------------------------------------------
# MCMC LOOP
#---------------------------------------------------------------------------------------------------------
for (irep in 1:ntot){
#----------------------------------------------------------------------------
# Step 1a: Sample coefficients of A matrix
for(mm in 1:M){
A0_draw = A_draw
A0_draw[,mm] <- 0
ztilde <- as.vector((Y - X%*%A0_draw)%*%t(L_drawinv[mm:M,,drop=FALSE])) * exp(-0.5*as.vector(Sv_draw[,mm:M,drop=FALSE]))
xtilde <- (L_drawinv[mm:M,mm,drop=FALSE] %x% X) * exp(-0.5*as.vector(Sv_draw[,mm:M,drop=FALSE]))
V_post <- try(chol2inv(chol(crossprod(xtilde)+diag(1/theta[,mm]))),silent=TRUE)
if(is(V_post,"try-error")) V_post <- solve(crossprod(xtilde)+diag(1/theta[,mm]))
if(is(V_post,"try-error")) V_post <- ginv(crossprod(xtilde)+diag(1/theta[,mm]))
A_post <- V_post%*%(crossprod(xtilde,ztilde)+diag(1/theta[,mm])%*%A_prior[,mm])
A.draw.i <- try(A_post+t(chol(V_post))%*%rnorm(ncol(X)),silent=TRUE)
if(is(A.draw.i,"try-error")) A.draw.i <- mvrnorm(1,A_post,V_post)
A_draw[,mm] <- A.draw.i
Em[,mm] <- Y[,mm]-X%*%A.draw.i
}
rownames(A_draw) <- colnames(X)
# Step 1b: Sample coefficients in L matrix
if(M > 1){
for(mm in 2:M){
eps.m <- (Y[,mm,drop=FALSE] - X%*%A_draw[,mm,drop=FALSE])*exp(-0.5*Sv_draw[,mm,drop=FALSE])
eps.x <- (Y[,1:(mm-1),drop=FALSE] - X%*%A_draw[,1:(mm-1),drop=FALSE])*exp(-0.5*Sv_draw[,mm,drop=TRUE])
L_post <- try(chol2inv(chol(crossprod(eps.x)+diag(1/L_prior[mm,1:(mm-1)],mm-1,mm-1))),silent=TRUE)
if(is(L_post,"try-error")) L_post <- solve(crossprod(eps.x)+diag(1/L_prior[mm,1:(mm-1)],mm-1,mm-1))
if(is(L_post,"try-error")) L_post <- ginv(crossprod(eps.x)+diag(1/L_prior[mm,1:(mm-1)],mm-1,mm-1))
l_post <- L_post%*%(crossprod(eps.x,eps.m)+diag(1/L_prior[mm,1:(mm-1)],mm-1,mm-1)%*%l_prior[mm,1:(mm-1)])
L.draw.i <- try(l_post+t(chol(L_post))%*%rnorm(length(1:(mm-1))),silent=TRUE)
if(is(L.draw.i,"try-error")) L.draw.i <- mvrnorm(1,l_post,L_post)
L_draw[mm,1:(mm-1)] <- L.draw.i
}
}
# Step 1c: Compute Em_str
L_drawinv <- solve(L_draw)
Em_str <- Y%*%t(L_drawinv) - X%*%A_draw%*%t(L_drawinv)
#----------------------------------------------------------------------------
# Step 2: different shrinkage prior setups
# MN
if(prior==1){
#Step for the first shrinkage parameter (own lags)
shrink1.prop <- exp(rnorm(1,0,scale1))*shrink1
if(shrink1.prop<1e-17) shrink1.prop <- 1e-17
if(shrink1.prop>1e+17) shrink1.prop <- 1e+17
theta1.prop <- .get_V(k=k,M=M,p=p,a_bar_1=shrink1.prop,a_bar_2=shrink2,a_bar_3=shrink3,a_bar_4=shrink4,sigma_sq=sigma_sq)
post1.prop<-sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta1.prop)),log=TRUE))+dgamma(shrink1.prop,0.01,0.01,log=TRUE)
post1.prop<-post1.prop+log(shrink1.prop) # correction term
post1 <- sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta)),log=TRUE))+dgamma(shrink1,0.01,0.01,log=TRUE)
post1 <- post1+log(shrink1) # correction term
if ((post1.prop-post1)>log(runif(1,0,1))){
shrink1 <- shrink1.prop
theta <- theta1.prop
accept1 <- accept1+1
}
#Step for the second shrinkage parameter (cross equation)
shrink2.prop <- exp(rnorm(1,0,scale2))*shrink2
if(shrink2.prop<1e-17) shrink2.prop <- 1e-17
if(shrink2.prop>1e+17) shrink2.prop <- 1e+17
theta2.prop <- .get_V(k=k,M=M,p=p,a_bar_1=shrink1,a_bar_2=shrink2.prop,a_bar_3=shrink3,a_bar_4=shrink4,sigma_sq=sigma_sq)
post2.prop <- sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta2.prop)),log=TRUE))+dgamma(shrink2.prop,0.01,0.01,log=TRUE)
post2.prop <- post2.prop + log(shrink2.prop) # correction term
post2 <- sum(dnorm(as.vector(A_draw),as.vector(A_prior),sqrt(as.vector(theta)),log=TRUE))+dgamma(shrink2,0.01,0.01,log=TRUE)
post2 <- post2 + log(shrink2) # correction term
if ((post2.prop-post2)>log(runif(1,0,1))){
shrink2 <- shrink2.prop
theta <- theta2.prop
accept2 <- accept2+1
}
if (irep<(0.5*nburn)){
if ((accept1/irep)<0.15) scale1 <- 0.99*scale1
if ((accept1/irep)>0.3) scale1 <- 1.01*scale1
if ((accept2/irep)<0.15) scale2 <- 0.99*scale2
if ((accept2/irep)>0.3) scale2 <- 1.01*scale2
}
}
# SSVS
if(prior==2){
for(mm in 1:M){
for(kk in 1:k){
u_i1 <- dnorm(A_draw[kk,mm],A_prior[kk,mm],tau0[kk,mm]) * p_i
u_i2 <- dnorm(A_draw[kk,mm],A_prior[kk,mm],tau1[kk,mm]) * (1-p_i)
gst <- u_i1/(u_i1 + u_i2)
if(gst=="NaN") gst <- 0
gamma[kk,mm] <- .bernoulli(gst)
gamma[is.na(gamma)] <- 1
if (gamma[kk,mm] == 0){
theta[kk,mm] <- tau0[kk,mm]^2
}else if (gamma[kk,mm] == 1){
theta[kk,mm] <- tau1[kk,mm]^2
}
}
}
for(mm in 2:M){
for(ii in 1:(mm-1)){
u_ij1 <- dnorm(L_draw[mm,ii],l_prior[mm,ii],kappa0) * q_ij
u_ij2 <- dnorm(L_draw[mm,ii],l_prior[mm,ii],kappa1) * (1-q_ij)
ost <- u_ij1/(u_ij1 + u_ij2)
if(is.na(ost)) ost <- 1
omega[mm,ii] <- .bernoulli(ost)
if (is.na(omega[mm,ii])) omega[mm,ii] <- 1
if(omega[mm,ii]==1){
L_prior[mm,ii] <- kappa1^2
}else{
L_prior[mm,ii] <- kappa0^2
}
}
}
}
# NG
if(prior==3){
# Normal-Gamma for Covariances
lambda2_L <- rgamma(1,d_lambda+L_tau*v,e_lambda+L_tau/2*sum(L_prior[lower.tri(L_prior)]))
#Step VI: Sample the prior scaling factors for covariances from GIG
for(mm in 2:M){
for(ii in 1:(mm-1)){
L_prior[mm,ii] <- do_rgig1(lambda=L_tau-0.5, chi=(L_draw[mm,ii]-l_prior[mm,ii])^2, psi=L_tau*lambda2_L)
}
}
if(sample_A){
#Sample L_tau through a simple RWMH step
L_tau_prop <- exp(rnorm(1,0,L_tuning))*L_tau
post_L_tau_prop <- .atau_post(atau=L_tau_prop, thetas=L_prior[lower.tri(L_prior)], k=v, lambda2=lambda2_L)
post_L_tau_old <- .atau_post(atau=L_tau, thetas=L_prior[lower.tri(L_prior)], k=v, lambda2=lambda2_L)
post.diff <- post_L_tau_prop-post_L_tau_old
post.diff <- ifelse(is.nan(post.diff),-Inf,post.diff)
if (post.diff > log(runif(1,0,1))){
L_tau <- L_tau_prop
L_accept <- L_accept+1
}
if (irep<(0.5*nburn)){
if ((L_accept/irep)>0.3) L_tuning <- 1.01*L_tuning
if ((L_accept/irep)<0.15) L_tuning <- 0.99*L_tuning
}
}
# Normal-Gamma for endogenous variables
for (ss in 1:p){
slct.i <- which(rownames(A_draw)==paste("Ylag",ss,sep=""))
A.lag <- A_draw[slct.i,,drop=FALSE]
A.prior <- A_prior[slct.i,,drop=FALSE]
theta.lag <- theta[slct.i,,drop=FALSE]
M.end <- nrow(A.lag)
if (ss==1){
lambda2_A[ss,1] <- rgamma(1,d_lambda+A_tau[ss,1]*M^2,e_lambda+A_tau[ss,1]/2*sum(theta.lag))
}else{
lambda2_A[ss,1] <- rgamma(1,d_lambda+A_tau[ss,1]*M^2,e_lambda+A_tau[ss,1]/2*prod(lambda2_A[1:(ss-1),1])*sum(theta.lag))
}
for (jj in 1:M){
for (ii in 1:M){
theta.lag[jj,ii] <- do_rgig1(lambda=A_tau[ss,1]-0.5,
chi=(A.lag[jj,ii]-A.prior[jj,ii])^2,
psi=A_tau[ss,1]*prod(lambda2_A[1:ss,1]))
}
}
theta[slct.i,] <- theta.lag
theta[theta<1e-8] <- 1e-8
#TO BE MODIFIED
if (sample_A){
#Sample a_tau through a simple RWMH step (on-line tuning of the MH scaling within the first 50% of the burn-in phase)
A_tau_prop <- exp(rnorm(1,0,A_tuning[ss,1]))*A_tau[ss,1]
post_A_tau_prop <- .atau_post(atau=A_tau_prop, thetas=as.vector(theta.lag), lambda2=prod(lambda2_A[1:ss,1]), k=length(theta.lag))
post_A_tau_old <- .atau_post(atau=A_tau[ss,1], thetas=as.vector(theta.lag), lambda2=prod(lambda2_A[1:ss,1]), k=length(theta.lag))
post.diff <- post_A_tau_prop-post_A_tau_old
post.diff <- ifelse(is.nan(post.diff),-Inf,post.diff)
if (post.diff > log(runif(1,0,1))){
A_tau[ss,1] <- A_tau_prop
A_accept[ss,1] <- A_accept[ss,1]+1
}
if (irep<(0.5*nburn)){
if ((A_accept[ss,1]/irep)>0.3) A_tuning[ss,1] <- 1.01*A_tuning[ss,1]
if ((A_accept[ss,1]/irep)<0.15) A_tuning[ss,1] <- 0.99*A_tuning[ss,1]
}
}
}
}
#----------------------------------------------------------------------------
# Step 3: Sample variances
if (sv){
for (jj in 1:M){
para <- as.list(pars_var[,jj])
para$nu = Inf; para$rho=0; para$beta<-0
svdraw <- svsample_fast_cpp(y=Em_str[,jj], draws=1, burnin=0, designmatrix=matrix(NA_real_),
priorspec=Sv_priors, thinpara=1, thinlatent=1, keeptime="all",
startpara=para, startlatent=Sv_draw[,jj],
keeptau=FALSE, print_settings=list(quiet=TRUE, n_chains=1, chain=1),
correct_model_misspecification=FALSE, interweave=TRUE, myoffset=0,
fast_sv=default_fast_sv)
svl[[jj]] <- svdraw
h_ <- exp(svdraw$latent[1,])
para$mu <- svdraw$para[1,"mu"]
para$phi <- svdraw$para[1,"phi"]
para$sigma <- svdraw$para[1,"sigma"]
para$latent0 <- svdraw$latent0[1,"h_0"]
pars_var[,jj] <- unlist(para[c("mu","phi","sigma","latent0")])
Sv_draw[,jj] <- log(h_)
}
}else{
for (jj in 1:M){
S_1 <- a_1+bigT/2
S_2 <- b_1+crossprod(Em_str[,jj])/2
sig_eta <- 1/rgamma(1,S_1,S_2)
Sv_draw[,jj] <- log(sig_eta)
}
}
#----------------------------------------------------------------------------
# Step 4: store draws
if(irep %in% thin.draws){
count <- count+1
A_store[count,,] <- A_draw
L_store[count,,] <- L_draw
res_store[count,,] <- Em
# SV
Sv_store[count,,] <- Sv_draw
pars_store[count,,] <- pars_var
# MN
shrink_store[count,] <- c(shrink1,shrink2)
# SSVS
gamma_store[count,,] <- gamma
omega_store[count,,] <- omega
# NG
theta_store[count,,] <- theta
lambda2_store[count,1,2] <- lambda2_L
lambda2_store[count,,1] <- lambda2_A
tau_store[count,1,2] <- L_tau
tau_store[count,,1] <- A_tau
}
}
#---------------------------------------------------------------------------------------------------------
# END ESTIMATION
#---------------------------------------------------------------------------------------------------------
dimnames(A_store)=list(NULL,colnames(X),colnames(A_OLS))
ret <- list(Y=Y,X=X,A_store=A_store,L_store=L_store,Sv_store=Sv_store,shrink_store=shrink_store,gamma_store=gamma_store,omega_store=omega_store,theta_store=theta_store,lambda2_store=lambda2_store,tau_store=tau_store,pars_store=pars_store,res_store=res_store)
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.