#################################################################################
##
## R package rmgarch by Alexios Ghalanos Copyright (C) 2008-2013.
## This file is part of the R package rmgarch.
##
## The R package rmgarch is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## The R package rmgarch is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
#################################################################################
.dcchessian = function(f, pars, arglist, fname)
{
.eps = .Machine$double.eps
cluster = arglist$cluster
dccN = arglist$dccN
arglist$returnType = "llh"
fx = f(pars, arglist)
n = length(pars)
# Compute the stepsize (h)
h = .eps ^ (1/3) * pmax( abs( pars ), 1 )
xh = pars + h
h = xh - pars
ee = as.matrix( diag( h ) )
# Compute forward and backward steps
g = vector(mode = "numeric", length = n)
if( !is.null(cluster) ){
clusterEvalQ(cluster, require(rmgarch))
clusterExport(cluster, c("pars", "ee", "arglist", "n", "fname"), envir = environment())
tmp = parLapply(cluster, as.list(1:n), fun = function(i){
tmpg = eval(parse(text = paste(fname, "( pars = pars + ee[, i], arglist)", sep = "")))
return( tmpg )
})
g = as.numeric( unlist(tmp) )
H = h %*% t( h )
clusterExport(cluster, c("H", "dccN", "g", "fx"), envir = environment())
tmp = parLapply(cluster, as.list(1:n), fun = function(i){
Htmp = H
for(j in (n - dccN + 1):n){
if(i <= j){
Htmp[i, j] = eval(parse(text = paste("(",fname, "( pars = pars + ee[, i] + ee[, j], arglist) - g[i] - g[j] + fx) / Htmp[i, j]", sep = "")))
Htmp[j, i] = Htmp[i, j]
}
}
return(Htmp)
})
} else{
tmp = lapply(as.list(1:n), FUN = function(i){
if(arglist$verbose) cat(paste("Evaluating StepValue ",i," out of ",n,"\n",sep=""))
tmpg = f( pars = pars + ee[, i], arglist)
return( tmpg )
})
g = as.numeric( unlist(tmp) )
H = h %*% t( h )
tmp = lapply(as.list(1:n), FUN = function(i){
Htmp = H
for(j in (n - dccN + 1):n){
if(i <= j){
Htmp[i, j] = (f( pars = pars + ee[, i] + ee[, j], arglist) - g[i] - g[j] + fx) / Htmp[i, j]
Htmp[j, i] = Htmp[i, j]
}
}
return(Htmp)
})
}
for(i in 1:n){
for(j in (n - dccN + 1):n){
if(i <= j){
H[i, j] = tmp[[i]][i, j]
H[j, i] = tmp[[i]][j, i]
}
}
}
newH = H[(n - dccN + 1):n, ]
H = newH
return(H)
}
# 2-stage partitioned standard errors for DCC type models
.dccmakefitmodel = function(garchmodel, f, arglist, timer, message, fname)
{
.eps = .Machine$double.eps
mpars = arglist$mpars
data = arglist$data
cluster = arglist$cluster
eval.se = arglist$eval.se
fitlist = arglist$fitlist
m = arglist$m
midx = arglist$midx
eidx = arglist$eidx
dccN = arglist$dccN
ipars = arglist$ipars
estidx = arglist$estidx
cnames = arglist$cnames
model = arglist$model
resids = residuals(fitlist)
sigmas = sigma(fitlist)
pars = mpars[which(eidx==1, arr.ind = TRUE)]
arglist$returnType = "all"
sol = f(pars, arglist)
likelihoods = sol$lik
loglikelihood = sol$llh
Rtout = sol$Rt
Qtout = sol$Qt
N = dim(resids)[1]
np = length(pars)
Ht = array( 0, dim = c(m, m, N) )
stdresid = matrix(0, nrow = N, ncol = m)
if( !is.null(cluster) ){
clusterExport(cluster, c("sigmas", "Rtout", "resids"), envir = environment())
tmp = parLapply(cluster, as.list(1:N), fun = function(i){
tmph = diag( sigmas[i, ] ) %*% Rtout[[i]] %*% diag( sigmas[i, ] )
zz = eigen( tmph )
sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) )
tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) )
return( list( H = tmph, Z = tmpz ) )
})
for(i in 1:N){
Ht[,,i] = tmp[[i]]$H
stdresid[i,] = tmp[[i]]$Z
}
} else{
tmp = lapply(as.list(1:N), FUN = function(i){
tmph = diag( sigmas[i, ] ) %*% Rtout[[i]] %*% diag( sigmas[i, ] )
zz = eigen( tmph )
sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) )
tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) )
return( list( H = tmph, Z = tmpz ) )
})
for(i in 1:N){
Ht[,,i] = tmp[[i]]$H
stdresid[i,] = tmp[[i]]$Z
}
}
arglist$stdresid = stdresid
arglist$Ht = Ht
if(eval.se){
A = zeros( np, np )
tidx = 1
for(i in 1:m){
cvar = fitlist@fit[[i]]@fit$cvar
workingsize = dim(cvar)[1]
A[(tidx:(tidx + workingsize - 1)), (tidx:(tidx + workingsize - 1))] = solve(cvar)
tidx = tidx + workingsize
}
if(arglist$verbose) cat("\n\nCalculating Standard Errors, this can take a while\n")
otherA = .dcchessian(f = f, pars = pars, arglist, fname)
A[(np - dccN + 1):np, ] = otherA
jointscores = zeros(N, np)
tidx = 1
for(i in 1:m){
cf = fitlist@fit[[i]]@model$pars[fitlist@fit[[i]]@model$pars[,4]==1,1]
workingsize = length(cf)
# head(fitlist@fit[[i]]@fit$scores, 22)
scx = fitlist@fit[[i]]@fit$scores
jointscores[,(tidx:(tidx + workingsize - 1))] = scx
tidx = tidx + workingsize
}
h = pmax( abs( ipars[estidx,1]/2 ), 1e-2 ) * .eps^(1/3)
hplus = ipars[estidx,1] + h
hminus = ipars[estidx,1] - h
likelihoodsplus = zeros( N, dccN )
likelihoodsminus = zeros( N, dccN )
zparsplus = zparsminus = pars
arglist$returnType = "lik"
for(i in 1:dccN){
hparameters1 = ipars[estidx,1]
hparameters2 = ipars[estidx,1]
hparameters1[i] = hplus[i]
hparameters2[i] = hminus[i]
# recombine
zparsplus[(np-dccN+1):np] = hparameters1
zparsminus[(np-dccN+1):np] = hparameters2
LHT1 = f(pars = zparsplus, arglist)
LHT2 = f(pars = zparsminus, arglist)
likelihoodsplus[, i] = LHT1
likelihoodsminus[, i] = LHT2
}
sctemp = likelihoodsplus - likelihoodsminus
DCCscores = matrix(NA, ncol = dim(sctemp)[2], nrow = dim(sctemp)[1])
sdtemp = 2 * repmat( t( h ), N, 1 )
for(i in 1:dim(sctemp)[2]){
DCCscores[,i] = sctemp[,i] / sdtemp[,i]
}
jointscores[, (np-dccN+1):np] = DCCscores
B = cov( jointscores )
A = A/ (N)
dcccvar = ( solve( A ) %*% B %*% solve( A ) ) / N
se.coef = sqrt(diag(abs(dcccvar)))
tval = as.numeric( pars/se.coef )
pval = 2* ( 1 - pnorm( abs( tval ) ) )
matcoef = matrix(NA, nrow = length(pars), ncol = 4)
matcoef[, 1] = pars
matcoef[, 2] = se.coef
matcoef[, 3] = tval
matcoef[, 4] = pval
allnames = NULL
for(i in 1:m){
allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = ""))
}
garchnames = allnames
dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE])
allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = ""))
dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)"))
} else{
se.coef = rep(NA, length(pars))
tval = rep(NA, length(pars))
pval = rep(NA, length(pars))
matcoef = matrix(NA, nrow = length(pars), ncol = 4)
matcoef[, 1] = pars
allnames = NULL
for(i in 1:m){
allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = ""))
}
garchnames = allnames
dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE])
allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = ""))
dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)"))
dcccvar = NULL
jointscores = NULL
}
dccfit = list()
dccfit$coef = pars
names(dccfit$coef) = allnames
dccfit$matcoef = matcoef
dccfit$garchnames = garchnames
dccfit$dccnames = dccnames
dccfit$cvar = dcccvar
dccfit$scores = jointscores
dccfit$R = Rtout
dccfit$H = Ht
dccfit$Q = Qtout
dccfit$stdresid = stdresid
dccfit$llh = loglikelihood
dccfit$log.likelihoods = likelihoods
dccfit$timer = timer
dccfit$convergence = 0
dccfit$message = message
return( dccfit )
}
.dccmakefiltermodel = function(garchmodel, f, arglist, timer, message, fname)
{
.eps = .Machine$double.eps
mpars = arglist$mpars
data = arglist$data
cluster = arglist$cluster
m = arglist$m
midx = arglist$midx
eidx = arglist$eidx
dccN = arglist$dccN
ipars = arglist$ipars
estidx = arglist$estidx
cnames = arglist$cnames
model = arglist$model
filterlist = arglist$filterlist
resids = residuals(filterlist)
sigmas = sigma(filterlist)
pars = mpars[which(midx==1, arr.ind = TRUE)]
arglist$returnType = "all"
sol = f(pars, arglist)
likelihoods = sol$lik
loglikelihood = sol$llh
Rtout = sol$Rt
Qtout = sol$Qt
N = dim(resids)[1]
np = length(pars)
Ht = array( 0, dim = c(m, m, N) )
stdresid = matrix(0, nrow = N, ncol = m)
if( !is.null(cluster) ){
clusterExport(cluster, c("sigmas", "Rtout", "resids"), envir = environment())
tmp = parLapply(cluster, as.list(1:N), fun = function(i){
tmph = diag( sigmas[i, ] ) %*% Rtout[[i]] %*% diag( sigmas[i, ] )
zz = eigen( tmph )
sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) )
tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) )
return( list( H = tmph, Z = tmpz ) )
})
for(i in 1:N){
Ht[,,i] = tmp[[i]]$H
stdresid[i,] = tmp[[i]]$Z
}
} else{
tmp = lapply(as.list(1:N), FUN = function(i){
tmph = diag( sigmas[i, ] ) %*% Rtout[[i]] %*% diag( sigmas[i, ] )
zz = eigen( tmph )
sqrtzz = ( zz$vectors %*% diag( sqrt( zz$values ) ) %*% solve( zz$vectors ) )
tmpz = as.numeric( resids[i, ] %*% solve( sqrtzz ) )
return( list( H = tmph, Z = tmpz ) )
})
for(i in 1:N){
Ht[,,i] = tmp[[i]]$H
stdresid[i,] = tmp[[i]]$Z
}
}
arglist$stdresid = stdresid
arglist$Ht = Ht
se.coef = rep(NA, length(pars))
tval = rep(NA, length(pars))
pval = rep(NA, length(pars))
matcoef = matrix(NA, nrow = length(pars), ncol = 4)
matcoef[, 1] = pars
allnames = NULL
for(i in 1:m){
allnames = c(allnames, paste("[",cnames[i],"].", rownames(eidx[eidx[,i]==1,i, drop = FALSE]), sep = ""))
}
garchnames = allnames
dccnames = rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE])
allnames = c(garchnames, paste("[Joint]", rownames(eidx[eidx[,m+1]==1,m+1, drop = FALSE]), sep = ""))
dimnames(matcoef) = list(allnames, c(" Estimate", " Std. Error", " t value", "Pr(>|t|)"))
dcccvar = NULL
jointscores = NULL
dccfilter = list()
dccfilter$coef = pars
names(dccfilter$coef) = allnames
dccfilter$garchnames = garchnames
dccfilter$dccnames = dccnames
dccfilter$dcccoef = pars
dccfilter$matcoef = matcoef
dccfilter$cvar = dcccvar
dccfilter$scores = jointscores
dccfilter$R = Rtout
dccfilter$H = Ht
dccfilter$Q = Qtout
dccfilter$stdresid = stdresid
dccfilter$llh = loglikelihood
dccfilter$log.likelihoods = likelihoods
dccfilter$timer = timer
dccfilter$convergence = 0
dccfilter$message = message
return( dccfilter )
}
.sqrtsymmat = function( X )
{
tmp = eigen( X )
sqrttmp = ( tmp$vectors %*% diag( sqrt( tmp$values ) ) %*% solve( tmp$vectors ) )
return( sqrttmp )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.