R/rmgarch-series.R

Defines functions CMD eigfun xfun4 xfun3 xfun2 xfun1 xfun lower.tri_na upper.tri_na cordist .stars .sdigit .simlayout .colorgradient newlagmatrix ones zeros size repmat .lagmatrix .lagx .embed .genxts .matrix2xts .extractmdata

Documented in cordist

#################################################################################
##
##   R package rmgarch by Alexios Ghalanos Copyright (C) 2008-2013.
##   This file is part of the R package rmgarch.
##
##   The R package rmgarch is free software: you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   The R package rmgarch is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
#################################################################################
.extractmdata = function(data, warn = FALSE)
{
	xdata = try(as.xts(data), silent = TRUE)
	if(inherits(xdata, "try-error")){
		if(warn) warning("\nrmgarch-->warning: data indexing not recognized by xts...coercing to Date with origin 1970-01-01.")
		if(is.data.frame(data) | is.matrix(data)) data = as.matrix(data)
		rownames(data) = NULL
		xdata = xts(data, as.POSIXct(as.Date(1:NROW(data), origin="1970-01-01")))
	}
	obj = list()
	obj$data = coredata(xdata)
	obj$index = index(xdata)
	obj$period = median(diff(index(xdata)))
	return(obj)
}
.matrix2xts = function(data){
	data = as.matrix(data)
	return(xts(data, as.POSIXct(as.Date(1:NROW(data), origin="1950-01-01"))))
}

.genxts = function(index0, length.out = 10, period = "days"){
	Z = seq(index0, by = period, length.out=length.out)
	
}
#---------------------------------------------------------------------------------
# lag functions
.embed = function(data, k, by = 1, ascending = FALSE)
{
	# n = no of time points, k = number of columns
	# by = increment. normally =1 but if =b calc every b-th point
	# ascending If TRUE, points passed in ascending order else descending.
	# Note that embed(1:n,k) corresponds to embedX(n,k,by=1,rev=TRUE)
	# e.g. embedX(10,3)
	#if(is.null(dim(data)[1])) n = length(data) else n = dim(data)[1]
	data = matrix(data, ncol = 1)
	n = dim(data)[1]
	s = seq(1, n - k + 1, by)
	lens = length(s)
	cols = if (ascending) 1:k else k:1
	return(matrix(data[s + rep(cols, rep(lens, k)) - 1], lens))
}

.lagx = function(data, n.lag = 1, removeNA = FALSE, pad = NA)
{
	# has NAs
	data = as.matrix(data)
	n = dim(data)[1]
	d = dim(data)[2]
	if(dim(data)[2] == 1) data = matrix(data, ncol = 1)
	z = apply(data, 2, FUN = function(x) .embed(x, n.lag + 1)[, n.lag + 1])
	if(!removeNA) z = rbind(matrix(pad, ncol = d, nrow = n.lag), z)
	return(z)
}

.lagmatrix = function(data, n.lag = 1, pad = 0)
{
	n = length(as.numeric(data))
	z = matrix(NA, ncol = n.lag, nrow = n)
	for(i in 1:n.lag) z[,i] = .lagx(as.numeric(data), i, removeNA = FALSE, pad = pad)
	z = cbind(data, z)
	colnames(z) = paste("lag-", 0:n.lag, sep = "")
	return(z)
}

repmat = function(a, n, m)
{
	kronecker(matrix(1, n, m), a)
}

size = function(x, n = NULL)
{
	x = as.matrix(x)
	if(missing(n)) sol = c(n = dim(x)[1], m = dim(x)[2]) else sol = dim(x)[n]
	return(sol)
}

zeros = function(n = 1, m = 1)
{
	if(missing(m)) m = n
	sol = matrix(0, nrow = n, ncol = m)
	return(sol)
}

ones = function(n = 1, m = 1)
{
	if(missing(m)) m = n
	sol = matrix(1, nrow = n, ncol = m)
	return(sol)
}

newlagmatrix = function(x, nlags, xc)
{
	nlags = nlags+1
	xt = size(x, 1);
	newX = rbind(x, zeros(nlags, 1))
	lagmatrix = repmat(newX, nlags, 1)
	lagmatrix = matrix(lagmatrix[1:(size(lagmatrix,1)-nlags)], nrow = (xt+nlags-1), ncol = nlags)
	lagmatrix = lagmatrix[nlags:xt,]
	y = lagmatrix[,1]
	x = lagmatrix[,2:nlags]
	if(xc == 1) x = cbind(ones(size(x,1), 1), x)
	return(list(y = y, x = x))
}

.colorgradient = function(n = 50, low.col = 0.6, high.col=0.7, saturation = 0.8) {
	if (n < 2) stop("n must be greater than 2")
	n1 = n%/%2
	n2 = - n - n1
	c(hsv(low.col, saturation, seq(1, 0.5, length = n1)),
			hsv(high.col, saturation, seq(0.5, 1, length = n2)))
}

.simlayout = function(m)
{
	if(m == 1){
		nf = c(1, 1, 2, 2)
		nf = layout(matrix(nf, 2, 2, byrow = TRUE), respect = TRUE)
		middle.plot = 1
	}
	if(m == 2){
		nf = c(1, 1, 1, 1, 0, 2, 2, 0, 3, 3, 3, 3)
		nf = layout(matrix(nf, 3, 4, byrow = TRUE), respect = TRUE)
		middle.plot = 2
	}
	if(m == 3){
		nf = c(1, 0, 0, 2, 0, 3, 3, 0, 4, 0, 0, 5)
		nf = layout(matrix(nf, 3, 4, byrow = TRUE), respect = TRUE)
		middle.plot = 3
	}
	if(m == 12){
		nf = c(1, 2, 3, 4,
				5, 6, 6, 7,
				8, 6, 6, 9,
				10, 11, 12, 13)		
		nf = layout(matrix(nf, 4, 4, byrow = TRUE), respect = TRUE)
	}
}

.sdigit = function(x){
	sid = as.numeric(strsplit(format(as.numeric(x), scientific=TRUE), "e")[[1]])[2]
	10^(-sid)
}

.stars = function(testvector, levels = c(0.01, 0.05, 0.1))
{
	N = length(testvector)
	ans = vector(mode="character", length = N)
	#recursive replacement
	z = which(testvector<levels[3])
	ans[z] = c("*")
	z = which(testvector<levels[2])
	ans[z] = c("**")
	z = which(testvector<levels[1])
	ans[z] = c("***")
	ans
}
###############################################################################
cordist = function(R, distance = c("ma","ms","meda","meds","eigen", "cmd"), n = 25, 
		plot = TRUE, dates = NULL, title = NULL)
{
	T = dim(R)[3]
	s = seq(1, T, by = n)
	if(s[length(s)]!=T) s = c(s, T)
	m = length(s)
	Z = matrix(0, ncol = m, nrow = m)
	for(i in 1:(m-1)){
		for(j in (i+1):m){
			Z[i,j] = xfun(R[,,s[j]], R[,,s[i]], type=distance[1])
		}
	}
	Z = (Z + t(Z))
	
	if(!is.null(dates)){
		if(!is(dates, "POSIXct")) stop("\ndates must be a POSIXct vector")
		if(length(dates)!=T) stop("\ndates length not equal to correlation array extent.")
		D = format(dates[s], "%Y")
	} else{
		D = as.character(s)
	}
	rownames(Z)=colnames(Z) = D
	idx = sapply(unique(D), FUN = function(x) min(which(D==x)))
	labCol = labRow = rep(NA, length(D))
	labCol[idx] = D[idx]
	labRow[idx] = D[idx]
	labRow = labRow[idx]
	labCol = labCol[idx]
	if(plot){
		par(bg="WhiteSmoke", col.main="black", col.lab="black", col.axis="black", cex.main=0.8, font=2)
		heatmap3(Z, labRow = labRow, labCol = labCol, at = idx/length(D), 
				col = rev(colorRampPalette(c("red", "orange","yellow"))( 15 )), 
				main = title)
	}
	return(invisible(Z))
}


upper.tri_na = function(x){
	z = upper.tri(x)
	z[z==FALSE] = NA
	z[z==TRUE] = 1
	return(z)
}

lower.tri_na = function(x){
	z = lower.tri(x)
	z[z==FALSE] = NA
	z[z==TRUE] = 1
	return(z)
}

xfun = function(C1, C2, type)
{
	ans = switch(tolower(type),
			ma = xfun1(C1, C2),
			ms = xfun2(C1, C2),
			meda = xfun3(C1, C2),
			meds = xfun4(C1, C2),
			eigen = eigfun(C1,C2),
			cmd = CMD(C1, C2))
	return( ans )
}

xfun1 = function(C1, C2){
	mean(abs((C1 - C2) * upper.tri_na(C1)), na.rm = TRUE)
}

xfun2 = function(C1, C2){
	mean(((C1 - C2) * upper.tri_na(C1))^2, na.rm = TRUE)
}

xfun3 = function(C1, C2){
	median(abs((C1 - C2) * upper.tri_na(C1)), na.rm = TRUE)
}

xfun4 = function(C1, C2){
	median(((C1 - C2) * upper.tri_na(C1))^2, na.rm = TRUE)
}

eigfun = function(C1, C2){
	e1 = eigen(C1, only.values = TRUE)$values[1]
	e2 = eigen(C2, only.values = TRUE)$values[1]
	return(e1 - e2)
}

heatmap3 = function (x,  revC = TRUE, labRow = NULL, labCol = NULL, at = 1:NROW(x)/NROW(x),
		main = NULL, col = rev(heat.colors(12, alpha = 0.9)), ...) 
{
	dev.hold()
	on.exit(dev.flush())
	op <- par(no.readonly = TRUE)
	on.exit(par(op), add = TRUE)
	colx = col
	if (length(di <- dim(x)) != 2 || !is.numeric(x)) stop("'x' must be a numeric matrix")
	nr <- di[1L]
	nc <- di[2L]
	if (nr <= 1 || nc <= 1) stop("'x' must have at least 2 rows and 2 columns")
	Rowv = NA
	Colv   = NA
	if (is.null(Rowv)) Rowv <- rowMeans(x, na.rm = TRUE)
	if (is.null(Colv)) Colv <- colMeans(x, na.rm = TRUE)
	rowInd <- 1L:nr
	colInd <- 1L:nc
	x <- x[rowInd, colInd]
	if (revC) {
		iy <- nr:1
		x <- x[, iy]
	}
	par(mar=c(3.1,4.1,4.1,2.1))
	image(x, axes = FALSE, xlab = "", ylab = "", col = colx, ...)	
	axis(2, at = 1-rev(at), labels = rev(labRow))
	axis(3, at = at, labels = labCol)
	if (!is.null(main)) {
		par(xpd = NA)
		mtext(main, side = 1, 
				adj = NA, padj = 1, cex = op[["cex.main"]], col = op[["col.main"]])		
	}
	return(invisible(1))
}

CMD = function(C1, C2)
{
	Cv1 = as.vector(C1)
	Cv2 = as.vector(C2)
	v = Cv1 %*% Cv2
	v1 = sqrt(sum(Cv1^2))
	v2 = sqrt(sum(Cv2^2))
	return( as.numeric( 1 - (v/(v1*v2)) ) )	
}
mcremene/changedRmgarch2 documentation built on Feb. 5, 2021, 12:46 a.m.