#############################################################################################################
# Authors:
# Amrit Singh, University of British Columbia, Vancouver.
# Florian Rohart, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
# Kim-Anh Le Cao, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#
# created: 01-04-2015
# last modified: 27-05-2016
#
# Copyright (C) 2015
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#############################################################################################################
# ----------------------------------------------------------------------------------------------------------
# perf.assess.pls - Function to evaluate the performance of fitted PLS (cross-validation)
# ----------------------------------------------------------------------------------------------------------
## -------------------------------- (s)PLS -------------------------------- ##
#' @rdname perf.assess
#' @export
perf.assess.mixo_pls <- function(object,
validation = c("Mfold", "loo"),
folds,
progressBar = FALSE,
nrepeat = 1,
BPPARAM = SerialParam(),
seed = NULL,
...)
{
# checking args and initialize params
ncomp = object$ncomp
spls.model <- is(object, 'mixo_spls')
progressBar <- .check_logical(progressBar)
BPPARAM$RNGseed <- seed
# run CV in parallel depending on BPPARAM
repeat_names <- .name_list(char = seq_len(nrepeat))
result <- bplapply(X = repeat_names, FUN = function(nrep) {
## progress bar
if (progressBar == TRUE)
.progressBar(nrep/nrepeat)
## CV
.perf.assess.mixo_pls_cv(object, validation = validation, folds = folds, nrep = nrep)
}, BPPARAM = BPPARAM)
measures <- lapply(result, function(x){
x$measures
})
measures <- Reduce(rbind, measures)
measures <- as.data.frame(measures)
# Add this line to remove rows with NAs that correspond to components < ncomp
measures <- dplyr::filter(measures, comp == ncomp)
## R CMD check stuff
measure <- feature <- comp <- block <- stability <- value <- NULL
lower <- upper <- keepX <- keepY <- NULL
measure.names <- .name_list(unique(measures$measure))
measures <- lapply(measure.names, function(meas) {
## ------ value of measures across repeats
df <- measures %>%
filter(measure == meas) %>%
mutate(measure = NULL) %>%
as.data.frame()
## ------ summary of measures across repeats
df.summ <- df %>%
group_by(feature, comp) %>%
summarise(mean = mean(value, na.rm = TRUE),
sd = sd(value, na.rm = TRUE)) %>%
as.data.frame()
list(values = df, summary = df.summ)
})
## ------ feature stability
if (spls.model)
{
features <- lapply(result, function(x){
x$features
})
features <- Reduce(rbind, features) %>%
group_by(feature, comp, block) %>%
summarise(stability = mean(stability, na.rm = TRUE))
features <- as.data.frame(features)
features <- lapply(list(stability.X = 'X', stability.Y = 'Y'), function(z){
lapply(.name_list(unique(features$comp)), function(n.comp){
df <- features
df <- filter(df, block == z & comp == n.comp)
df <- df[,c('feature', 'stability')]
vec <- df$stability
names(vec) <- df$feature
sort(vec, decreasing = TRUE)
})
})
} else
{
features <- NULL
}
result <- list(measures = measures,
features = features)
mc <- mget(names(formals())[-1], sys.frame(sys.nframe()))
## replace function, object with unevaluated call
mc <- as.call(c(as.list(match.call())[1:2], mc))
result <- c(list(call = mc), result)
# change this so cant plot the output
class(result) <- "perf"
return(result)
}
#' @rdname perf.assess
#' @export
perf.assess.mixo_spls <- perf.assess.mixo_pls
#' @noRd
#' @keywords Internal
.perf.assess.mixo_pls_cv <- function(object,
validation = c("Mfold", "loo"),
folds,
nrep = 1,
...)
{
# changes to bypass the loop for the Q2
## -------- checks -------- ##
if (object$mode == 'invariant')
stop("'perf' is only available for (s)pls with modes: 'regression', 'canonical' or 'classic'. Object has mode 'invariant'", call. = FALSE)
validation = match.arg(validation)
## ---------- CV ---------- ##
## ------------- initialise
# these are the centered and scaled matrices output from pls, we remove $nzv if needed
if (length(object$nzv$Position)>0)
{
X = object$X[, -object$nzv$Position]
} else {
X = object$X
}
Y = object$Y
scale = object$scale
tol = object$tol
max.iter = object$max.iter
mode = object$mode
ncomp = object$ncomp
n = nrow(X)
p = ncol(X)
q = ncol(Y)
if (any(is.na(X)) || any(is.na(Y)))
stop("missing data in 'X' and/or 'Y'. Use 'nipals' for dealing with NAs.", call. = FALSE)
#-- tells which variables are selected in X and in Y --#
if (is(object, "mixo_spls"))
{
keepX = object$keepX
keepY = object$keepY
} else {
keepX = rep(ncol(X), ncomp)
keepY = rep(ncol(Y), ncomp)
}
#-- define the folds --#
if (validation == "Mfold")
{
if (is.list(folds))
{
if (length(folds) < 2 || length(folds) > n)
stop("Invalid number of folds.", call. = FALSE)
if (length(unlist(folds)) != n)
stop("Invalid folds. The total number of samples in folds must be equal to ",
n, ".", call. = FALSE)
if (length(unique(unlist(folds))) != n)
stop("Invalid folds. Repeated samples in folds.", call. = FALSE)
M = length(folds)
} else {
if (is.null(folds) || !is.finite(folds) || folds < 2 || folds > n)
{
stop("Invalid number of folds.", call. = FALSE)
} else {
M = round(folds)
folds = split(sample(1:n), rep(1:M, length = n))
}
}
} else {
folds = split(1:n, rep(1:n, length = n))
M = n
}
#-- initialize new objects --#
if (mode == 'canonical'){
RSS = rbind(rep(n - 1, p), matrix(nrow = ncomp, ncol = p))
# RSS.indiv is the reconstructed matrix X
#RSS.indiv = lapply(1 : (ncomp + 1), function(x){matrix(NA, nrow = n, ncol = p)})
#RSS.indiv[[1]] = X
press.mat = lapply(1 : ncomp, function(x){matrix(NA, nrow = n, ncol = p)})
PRESS.inside = Q2 = matrix(nrow = ncomp, ncol = p)
}else{
RSS = rbind(rep(n - 1, q), matrix(nrow = ncomp, ncol = q))
# RSS.indiv is the reconstructed matrix Y
#RSS.indiv = lapply(1 : (ncomp + 1), function(x){matrix(NA, nrow = n, ncol = q)})
#RSS.indiv[[1]] = Y # KA changed
press.mat = lapply(1 : ncomp, function(x){matrix(NA, nrow = n, ncol = q)})
PRESS.inside = Q2 = matrix(nrow = ncomp, ncol = q)
}
MSEP.mat = Ypred = array(0, c(n, q, ncomp))
MSEP = R2 = matrix(nrow = ncomp, ncol = q)
# to store the predicted components
t.pred.cv = matrix(nrow = nrow(X), ncol = ncomp)
u.pred.cv = matrix(nrow = nrow(X), ncol = ncomp)
# to record feature stability, a list of form
# list(X = list(comp1 = c(feature1 = 0.99, ...),
# comp2 = c(feature2 = 0.98, ...)),
# Y = ...)
features <-
lapply(list(X = X, Y = Y), function(Z){
features <- vector(mode = 'numeric', length = ncol(Z))
names(features) <- colnames(Z)
features <- lapply(seq_len(ncomp), function(x) features)
names(features) <- paste0('comp', seq_len(ncomp))
return(features)
})
# ==== loop on h = ncomp is only for the calculation of Q2 on each component
## loop adds data to new row in RSS
for (h in 1:ncomp) # this loop needs to run on all components because Q2 is calculated using the RSS of ncomp-1
{
#-- initialising arguments --#
tt = object$variates$X[, h]
u = object$variates$Y[, h]
b = object$loadings$Y[, h]
#nx = p - keepX[h]
#ny = q - keepY[h]
# only used for matrices deflation across dimensions
c = crossprod(X, tt)/drop(crossprod(tt)) #object$mat.c[, h]
d = crossprod(Y, tt)/drop(crossprod(tt)) #object$mat.d[, h]
e = crossprod(Y, u)/drop(crossprod(u))
# deflate matrices
X = X - tt %*% t(c)
#-- mode classic
if (mode == "classic")
Y = Y - tt %*% t(b)
#-- mode regression
if (mode == "regression")
Y = Y - tt %*% t(d)
#-- mode canonical
if (mode == "canonical")
Y = Y - u %*% t(e)
#-- mode invariant: Y is unchanged
# update RSS for X/Y deflated
if(mode == 'canonical'){ # based on X
RSS[h + 1, ] = colSums((X)^2) # == colSums((X - tt %*% t(c))^2) if we had not deflated
}else{ # regression, invariant, classic
RSS[h + 1, ] = colSums((Y)^2) #
}
} # end h to calculate RSS
# ======== loop on i for cross validation ===================#
for (i in 1:M) # M is number of folds
{
# initialise the train / test datasets
omit = folds[[i]]
X.train = object$X[-omit, , drop = FALSE]
Y.train = object$Y[-omit, , drop = FALSE]
X.test = object$X[omit, , drop = FALSE]
Y.test = object$Y[omit, , drop = FALSE]
# New loop to calculate prediction - theoretically should be able to just calculate ncomp directly but this gives a different result for whatever reason
# So just keeping the loop but exacting rows corresponding to ncomp at the end
for (h in 1:ncomp)
{
#-- for MSEP and R2 criteria, no loop on the component as we do a spls with ncomp
##if (h == 1)
#{
#nzv = (apply(X.train, 2, var) > .Machine$double.eps) # removed in v6.0.0 so that MSEP, R2 and Q2 are obtained with the same data
# re-added in >6.1.3 to remove constant variables
nzv.X = (apply(X.train, 2, var) > .Machine$double.eps)
nzv.Y = (apply(Y.train, 2, var) > .Machine$double.eps)
# creating a keepX/Y.temp that can change for each fold, depending on nzv.X/Y
keepX.temp = keepX
keepY.temp = keepY
if(any(keepX.temp > sum(nzv.X)))
keepX.temp[which(keepX.temp>sum(nzv.X))] = sum(nzv.X)
if(any(keepY.temp > sum(nzv.Y)))
keepY.temp[which(keepY.temp>sum(nzv.Y))] = sum(nzv.Y)
# TODO clarify the iterative nzv process in docs -- give it a better name (these are actually !nzv)
# here h = 1 because we deflate at each step then extract the vectors for each h comp
spls.res = spls(X.train[, nzv.X, drop = FALSE], Y.train[, nzv.Y, drop = FALSE], ncomp = 1, mode = mode, max.iter = max.iter, tol = tol,
keepX = keepX.temp[h], keepY = keepY.temp[h], near.zero.var = FALSE, scale = scale)
Y.hat = predict.mixo_spls(spls.res, X.test[, nzv.X, drop = FALSE])$predict
# added the stop msg
if(sum(is.na(Y.hat))>0) stop('Predicted Y values include NA')
# replaced h by 1; Y.hat is the prediction of the test samples for all q variable in comp h = 1
Ypred[omit, nzv.Y, h] = Y.hat[, , 1]
MSEP.mat[omit, nzv.Y, h] = (Y.test[, nzv.Y] - Y.hat[, , 1])^2
# Q2 criterion: buidling directly from spls object
u.cv = spls.res$variates$Y[, 1]
t.cv = spls.res$variates$X[, 1]
a.cv = spls.res$loadings$X[, 1]
b.cv = spls.res$loadings$Y[, 1, drop = FALSE]
# reg coefficients:
c.cv = crossprod(X.train, u.cv) / drop(crossprod(u.cv))
d.cv = crossprod(Y.train, t.cv) / drop(crossprod(t.cv)) # d.cv \neq to b.cv as d.cv is normed wrt to t.cv
e.cv = crossprod(Y.train, u.cv) / drop(crossprod(u.cv))
# calculate predicted components and store
t.pred = c(X.test %*% a.cv)
t.pred.cv[omit,h] = t.pred # needed for tuning
b.pred = crossprod(Y.test, t.pred)
b.pred.cv = b.pred/ drop(sqrt(crossprod(b.pred)))
u.pred.cv[omit,h] = Y.test[, nzv.Y] %*% b.cv # needed for tuning, changed instead of b.pred.cv
# predicted reg coeff, could be removed
e.pred.cv = crossprod(as.matrix(Y.test), Y.test %*% b.pred.cv) / drop(crossprod(Y.test %*% b.pred))
d.pred.cv = crossprod(as.matrix(Y.test), t.pred) / drop(crossprod(t.pred))
# deflate matrices X
X.train = X.train - t.cv %*% t(c.cv)
X.test = X.test - t.pred %*% t(c.cv)
# deflate matrices X
#-- mode classic
if (mode == "classic"){
Y.train[, nzv.Y] = Y.train[, nzv.Y] - t.cv %*% t(b.cv) # could be pred on b
Y.test[, nzv.Y] = Y.test[, nzv.Y] - t.pred %*% t(b.cv)
}
#-- mode regression
if (mode == "regression"){
Y.train = Y.train - t.cv %*% t(d.cv) # could be pred d.pred.cv? does not decrease enough
Y.test[, nzv.Y] = Y.test[, nzv.Y] - Y.hat[, , 1] # == Y.test - t.pred %*% t(d.cv)
}
#-- mode canonical ## KA added
if (mode == "canonical"){
Y.train = Y.train - u.cv %*% t(e.cv) # could be pred on e
Y.test = Y.test - (Y.test[, nzv.Y] %*% b.cv) %*% t(e.cv) # here u.pred = Y.test %*% b.cv (b.pred.cv gives similar results)
}
#-- mode invariant: Y is unchanged
# calculate predicted matrix X.hat or Y.hat based on X.test
if(mode == 'canonical'){ # Xa c' = t c'
#X.hat.cv = t.pred %*% t(c.cv), calculated earlier
press.mat[[h]][omit, ] = X.test # == X.test - X.hat.cv
}else{ # if(mode == 'regression'){ # Xa d' = t d'
#Y.hat.cv = t.pred %*% t(d.cv), calculated earlier
press.mat[[h]][omit, ] = Y.test # == Y.test - Y.hat.cv
}
# Record selected features in each set
if (is(object,"mixo_spls"))
{
X.feature <- as.numeric(names(features$X[[h]]) %in% selectVar(spls.res, comp = 1)$X$name)
Y.feature <- as.numeric(names(features$Y[[h]]) %in% selectVar(spls.res, comp = 1)$Y$name)
# TODO using comp = 1 after deflation: this is problematic if, say, folds = 3, keepX = c(2, 100) (max 4 features (2 folds x 2 features) should be output for comp2 before calculating stability)
features$X[[h]] <- features$X[[h]] + X.feature / length(folds)
features$Y[[h]] <- features$Y[[h]] + Y.feature / length(folds)
}
} # end loop on h ncomp
} # end i (cross validation)
# store results for each comp
for (h in ncomp:ncomp){
#-- compute the Q2 criterion --#
# norm is equivalent to summing here the squared press values:
PRESS.inside[h, ] = apply(press.mat[[h]], 2, function(x){norm(x, type = "2")^2})
if(mode != 'canonical'){
Q2[h, ] = 1 - PRESS.inside[h, ] / RSS[h, ] # note that RSS has an extra row so here Q is being calculated with PRESS of h and RSS of h-1
MSEP[h, ] = apply(as.matrix(MSEP.mat[, , h]), 2, mean)
R2[h, ] = (diag(cor(object$Y, Ypred[, , h])))^2
} # if mode == canonical, do not output
}
#-- output -----------------------------------------------------------------#
#---------------------------------------------------------------------------#
Q2.total = matrix(1 - rowSums(PRESS.inside) / rowSums(RSS[-(ncomp+1), , drop = FALSE]),
nrow = 1, ncol = ncomp,
dimnames = list("Q2.total", paste0("comp", seq_len(ncomp))))
# set up dimnames and outputs
result = list()
if(mode != 'canonical'){
rownames(MSEP) = rownames(R2) = rownames(Q2) = paste0("comp", seq_len(ncomp))
colnames(MSEP) = colnames(R2) = colnames(Q2) = object$names$colnames$Y
result$MSEP = t(MSEP)
result$RMSEP = sqrt(t(MSEP))
#result$MSEP.mat = MSEP.mat
result$R2 = t(R2)
result$Q2 = t(Q2) # remove this output when canonical mode?
}
result$Q2.total = Q2.total
RSS <- t(RSS) ## bc all others are transposed
PRESS = t(PRESS.inside)
result$RSS <- RSS[,-1, drop = FALSE] ## drop q/p
result$PRESS <- PRESS
if (ncol(object$Y) > 1)
{
# TODO ensure these are in fact no more necessary
#result$d.cv = d.cv # KA added
#result$b.cv = b.cv # KA added
#result$c.cv = c.cv # KA added
#result$u.cv = u.cv # KA added
#result$a.cv = a.cv # KA added
#result$t.pred.cv = t.pred.cv # needed for tuning
#result$u.pred.cv = u.pred.cv # needed for tuning
# extract the predicted components per dimension, take abs value
result$cor.tpred = diag(abs(cor(t.pred.cv, object$variates$X)))
result$cor.tpred = t(data.matrix(result$cor.tpred, rownames.force = TRUE))
result$cor.upred = diag(abs(cor(u.pred.cv, object$variates$Y)))
result$cor.upred = t(data.matrix(result$cor.upred, rownames.force = TRUE))
# RSS: no abs values here
result$RSS.tpred = apply((t.pred.cv - object$variates$X)^2, 2, sum)/(nrow(X) -1)
result$RSS.tpred = t(data.matrix(result$RSS.tpred, rownames.force = TRUE))
result$RSS.upred = apply((u.pred.cv - object$variates$Y)^2, 2, sum)/(nrow(X) -1)
result$RSS.upred = t(data.matrix(result$RSS.upred, rownames.force = TRUE))
}
result <- mapply(result, names(result), FUN = function(arr, measure) {
arr <- data.matrix(arr)
col.names <- seq_len(ncomp)
if (ncol(arr) == ncomp)
colnames(arr) <- col.names
else
stop("unexpected dimension for entry in perf measures: ", measure)
if (nrow(arr) == 1)
rownames(arr) <- measure
arr
}, SIMPLIFY = FALSE)
## melt by comp
result <- lapply(result, FUN = function(arr, nrep) {
arr <- melt(arr)
colnames(arr) <- c('feature', 'comp', 'value')
if (nlevels(arr$feature) == 1) ## for Y-level measures (ass opossed to Y_feature level) such as Q2.total
arr$feature <- factor('Y')
arr$nrep <- nrep
arr
}, nrep = nrep)
col.names <- names(result[[1]])
#' @importFrom reshape2 melt
result <- melt(result, id.vars = col.names)
colnames(result) <- c(col.names, 'measure')
result <- list(measures = result)
#---- stability of features -----#
if (is(object, "mixo_spls"))
{
features <- lapply(features, function(x)
{
x <- lapply(x, function(stab) round(stab, 2))
df <- data.frame(x)
df <- data.frame(feature = rownames(df), df)
df
})
features <- melt(features, id.vars = 'feature', value.name = 'stability', variable.name = 'comp')
## add block name column instead of default 'L1'
colnames(features) <- c(rev(rev(colnames(features))[-1]), 'block')
features$nrep <- nrep
# filter features to only include those based on ncomp
features <- dplyr::filter(features, comp == paste0("comp", ncomp))
result$features <- features
}
return(invisible(result))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.