## ----setup, include = FALSE---------------------------------------------------
suppressMessages({
require(losmix)
require(TMB)
})
source("format.R")
knitr::opts_chunk$set(comment = NA)
## ----ex1_sim------------------------------------------------------------------
require(losmix)
set.seed(1234) # reproducible results
p <- 3 # number of covariates
nSub <- 50 # number of subjects
N <- sample(20:50, nSub, replace = TRUE) # number of observations per subject
# hyperparameters
lambda <- rnorm(p)
Omega <- diag(p)
nu <- 5 * runif(1) + 3
tau <- rexp(1)
# parameters: generate them from an mNIX distribution
Theta <- mnix_sim(nSub, lambda = lambda, Omega = Omega, nu = nu, tau = tau)
# data: generate vector/matrix for each subject,
# then merge into single vector/matrix
# covariate matrices
X <- lapply(N, function(n) matrix(rnorm(n*p), n, p))
# response vectors
y <- lapply(1:nSub, function(ii) {
rnorm(N[ii], mean = c(X[[ii]] %*% Theta$beta[ii,]), sd = Theta$sigma[ii])
})
# convert lists to single matrix/vector
X <- do.call(rbind, X)
y <- do.call(c, y)
# subject identifiers
id <- rep(1:nSub, times = N)
## ----ex1_nlp------------------------------------------------------------------
# marginal posterior distribution
nlp <- mnix_marg(id = id, y = y, X = X)
names(nlp)
## ----ex1_fit, warning = FALSE-------------------------------------------------
# objective function
ofun <- function(par) {
out <- nlp$fn(par)
# include gradient information via 'attribute'
attr(out, "gradient") <- nlp$gr()
out
}
# optimization
opt <- nlm(p = nlp$par, # starting value (losmix picks a reasonable default)
f = ofun) # objective function
opt$code # code == 1 means that 'nlm' thinks it converged
## ----ex1_grad_check-----------------------------------------------------------
disp <- rbind(est = opt$estimate, # potential solution
grad = opt$gradient, # gradient at the potential solution
rel = opt$gradient/abs(opt$estimate)) # relative size
signif(disp, 2)
## ----ex1_hess-----------------------------------------------------------------
psi_mean <- opt$estimate # (approximate) posterior mean of p(psi | Y, X)
psi_var <- solveV(nlp$he(opt$estimate)) # (approximate) posterior variance
## ----ex1_mpost, fig.width = 7, fig.height = 5---------------------------------
# Step 2: sample from p_hat(psi | Y, X)
npost <- 1e4 # number of posterior draws
Psi_post <- rmvn(n = npost, mu = psi_mean, Sigma = psi_var)
# Step 3: convert to sample from p_hat(phi | Y, X)
Phi_post <- ivec_phi(Psi_post)
# histograms of posterior distributions
# true hyperparameter values are vertical lines in red
# format data for plotting
iOmega <- cbind(rbind(1:p, 1:p), combn(1:p,2)) # unique elements of Omega
Phi_plot <- cbind(Phi_post$lambda, # lambda
apply(iOmega, 2,
function(ii) Phi_post$Omega[ii[1],ii[2],]), # Omega
Phi_post$nu, # nu
Phi_post$tau) # tau
# hyperparameter names
phi_names <- c(paste0("lambda[", 1:p, "]"),
paste0("Omega[", iOmega[1,], iOmega[2,], "]"),
"nu", "tau")
# true values
phi_true <- c(lambda, Omega[t(iOmega)], nu, tau)
# create plot
par(mfrow = c(3,4), mar = c(2,2,4,.5))
for(ii in 1:ncol(Phi_plot)) {
# approximate posterior
hist(Phi_plot[,ii], breaks = 40, xlab = "", ylab = "",
main = parse(text = paste0("hat(p)(", phi_names[ii],
"*\" | \"*bold(Y),bold(X))")))
# true parameter value
abline(v = phi_true[ii], col = "red", lwd = 2)
}
# legend
plot(0, type = "n", xlim = c(0,1), ylim = c(0,1),
xlab = "", ylab = "", axes = FALSE)
legend("bottom", inset = .05,
legend = c("Posterior Distribution", "True Hyperparameter Value"),
lwd = c(NA, 2), pch = c(22, NA), seg.len = 1.5,
col = c("black", "red"), bg = c("white", NA), cex = .85)
## ----ex1_rxpost, fig.width = 7, fig.height = 5--------------------------------
# inference for random effects
iSub <- sample(nSub, 1) # pick a subject at random
# data for subject i
Xi <- X[id == iSub,]
yi <- y[id == iSub]
# sample from p(thetai | y, X)
Thetai_post <- mnix_sim(npost,
lambda = Phi_post$lambda, Omega = Phi_post$Omega,
nu = Phi_post$nu, tau = Phi_post$tau,
y = yi, X = Xi)
# plot (approximate) posterior distributions
# true parameter values are plotted in red
# format data for plotting
Thetai_plot <- cbind(Thetai_post$beta, # beta
Thetai_post$sigma) # sigma
# parameter names
thetai_names <- c(paste0("beta[i", 1:p, "]"), "sigma[i]")
# true parameter values for subject i
thetai_true <- c(Theta$beta[iSub,], sigma = Theta$sigma[iSub])
# create plot
par(mfrow = c(2,2), mar = c(2,2,4,.5))
for(ii in 1:ncol(Thetai_plot)) {
# approximate posterior
hist(Thetai_plot[,ii], breaks = 40, xlab = "", ylab = "",
main = parse(text = paste0("hat(p)(", thetai_names[ii],
"*\" | \"*bold(Y),bold(X))")))
# true parameter value
abline(v = thetai_true[ii], col = "red", lwd = 2)
}
## ----ex2_dir, echo = 2, results = "hide"--------------------------------------
mxt_file <- system.file("include", "losmix", "ModelExt.cpp", package = "losmix")
system.file("include", "losmix", "ModelExt.cpp", package = "losmix")
## ---- echo = FALSE, results = "asis"------------------------------------------
cat("```cpp", readLines(mxt_file), "```", sep = "\n")
## ----ex2_compile, eval = FALSE------------------------------------------------
# require(TMB)
#
# model_name <- "ModelExt"
# # instruct TMB where to find losmix library
# include_path <- system.file("include", package = "losmix")
# # compile and load model
# TMB::compile(paste0(model_name, ".cpp"),
# PKG_CXXFLAGS = paste0('-I"', include_path, '"'))
# dyn.load(TMB::dynlib(model_name))
## ----ex2_data, fig.width = 7, fig.height = 4----------------------------------
nSub <- 10 # number of subjects
N <- sample(20:50, nSub, replace = TRUE) # observations per subject
# hyperparameters
gamma <- runif(1) * .2
lambda <- rnorm(2)
Omega <- crossprod(matrix(rnorm(4), 2, 2))/10
nu <- runif(1, 1, 2)*50
tau <- rexp(1)/100
# covariates
X <- lapply(N, function(N) {
cbind(t = 1:N, x = runif(1, 1, 5))
})
# parameters
Theta <- mnix_sim(nSub, lambda = lambda, Omega = Omega,
nu = nu * sapply(X, function(x) x[1,2]), tau = tau)
# responses
# mean vectors
Mu <- lapply(1:nSub, function(ii) {
Theta$beta[ii,1] + Theta$beta[ii,2] * exp(-gamma * X[[ii]][,1])
})
# observation vectors
y <- lapply(1:nSub, function(ii) {
rnorm(N[ii], mean = Mu[[ii]], sd = Theta$sigma[ii])
})
# convert data to regular format
X <- do.call(rbind, X)
y <- do.call(c, y)
id <- rep(1:nSub, times = N)
# plot data
par(mfrow = c(1,1), mar = c(4,4,.5,.5))
clrs <- rep(c("black", "blue", "red", "orange", "green4", "brown"),
len = nSub)
plot(0, type = "n", ylab = expression(y[it]), xlab = expression(t),
xlim = c(0, max(N)), ylim = range(sapply(Mu, range), y))
invisible(sapply(1:nSub, function(ii) {
lines(x = 1:N[ii], y = Mu[[ii]], col = clrs[ii], lwd = 2)
points(x = 1:N[ii], y = y[id == ii], pch = 16, cex = .8, col = clrs[ii])
}))
## ----ex2_help-----------------------------------------------------------------
# simulate hyperparameters on the transformed scale
sim_psi <- function() {
gamma <- runif(1)
lambda <- rnorm(2)
Omega <- crossprod(matrix(rnorm(4), 2, 2))
nu <- runif(1, 1, 2)
tau <- rexp(1)/5
list(gamma = gamma, lambda = lambda,
logC_Omega = log_chol(Omega),
log_nu = log(nu), log_tau = log(tau))
}
# _negative_ marginal log-posterior for ModelExt:
# R implementation
mxt_r <- function(psi, id, y, X) {
nSub <- length(unique(id))
lm <- sapply(1:nSub, function(ii) {
# individual covariate and responses
Xi <- X[id == ii,]
yi <- y[id == ii]
# hyperparameters on the regular scale
gamma <- psi$gamma
lambda <- psi$lambda
Omega <- ilog_chol(psi$logC_Omega)
nu <- exp(psi$log_nu) * Xi[1,2] # covariate-dependent
tau <- exp(psi$log_tau)
# covariate matrix
Xi <- cbind(1, exp(-gamma * Xi[,1])) # hyperparameter-dependent
# posterior mNIX hyperparameters
phi_post <- mnix_post(y = yi, X = Xi,
lambda = lambda, Omega = Omega, nu = nu, tau = tau)
# marginal likelihood per individual
mnix_zeta(Omega = phi_post$Omega, nu = phi_post$nu, tau = phi_post$tau) -
mnix_zeta(Omega = Omega, nu = nu, tau = tau)
})
# default prior
lpi <- lchol_prior(ilog_chol(psi$logC_Omega))
-(sum(lm) + lpi) # negative loglikelihood
}
## ----ex2_inst_setup, include = FALSE------------------------------------------
model_name <- "ModelExt"
p <- 2
mxt_tmb <- TMB::MakeADFun(data = c(list(model = model_name),
format_data(id = id, X = X, y = y)),
parameters = list(gamma = 1, lambda = rep(0,p),
logC_Omega = log_chol(diag(p)),
log_nu = 0, log_tau = 0),
silent = TRUE, DLL = "losmix_TMBExports")
## ----ex2_inst, eval = FALSE---------------------------------------------------
# # _negative marginal logposterior for ModelExt:
# # TMB implementation
# mxt_data <- format_data(id = id, y = y, X = X) # TMB format
# mxt_pars <- sim_psi() # initialize with arbitrary values (placeholders)
# mxt_tmb <- TMB::MakeADFun(data = mxt_data,
# parameters = mxt_pars,
# DLL = model_name, silent = TRUE)
## ----ex2_test-----------------------------------------------------------------
replicate(10, expr = {
psi <- sim_psi()
mxt_r(psi = psi, id = id, y = y, X = X) - mxt_tmb$fn(unlist(psi))
})
## ----ex2_mpost----------------------------------------------------------------
# objective function
ofun <- function(par) {
out <- mxt_tmb$fn(par)
attr(out, "gradient") <- mxt_tmb$gr()
out
}
# optimization
opt <- nlm(p = mxt_tmb$par, f = ofun)
opt$code # code == 1 means that 'nlm' thinks it converged
# approximate posterior inference
npost <- 1e4 # number of posterior draws
psi_mean <- opt$estimate # (approximate) posterior mean
psi_var <- solveV(mxt_tmb$he(opt$estimate)) # (approximate) posterior variance
Psi_post <- rmvn(n = npost, mu = psi_mean, Sigma = psi_var)
## ---- eval = FALSE------------------------------------------------------------
# mxt_tmb$simulate(psi)
## ----ex2_rxinst_setup, include = FALSE----------------------------------------
iSub <- sample(nSub, 1)
mxt1_tmb <- TMB::MakeADFun(data = c(list(model = model_name),
format_data(X = X[id == iSub,],
y = y[id == iSub])),
parameters = list(gamma = 1, lambda = rep(0,p),
logC_Omega = log_chol(diag(p)),
log_nu = 0, log_tau = 0),
silent = TRUE, DLL = "losmix_TMBExports")
## ----ex2_rxinst, eval = FALSE-------------------------------------------------
# iSub <- sample(nSub, 1) # pick an observation at random
# # TMB implementation for a single subject
# mxt1_data <- format_data(y = y[id == iSub], X = X[id == iSub,]) # TMB format
# mxt1_tmb <- TMB::MakeADFun(data = mxt1_data,
# parameters = sim_psi(), # placeholder
# DLL = model_name, silent = TRUE)
#
## ----ex2_rxpost, fig.width = 7, fig.height = 3.5------------------------------
# simulate from random-effects distribution
# note: there is no need to convert to original parametrization first
Thetai_post <- apply(Psi_post, 1, function(psi) mxt1_tmb$simulate(psi))
# convert from list of lists to list with beta and sigma
Thetai_post <- unlist_bind(Thetai_post,
name = c("beta", "sigma"), bind = c(cbind, c))
Thetai_post$beta <- t(Thetai_post$beta) # beta needs to be transposed
thetai_true <- c(Theta$beta[iSub,], Theta$sigma[iSub]) # true parameter values
# plot
Thetai_plot <- cbind(Thetai_post$beta, Thetai_post$sigma)
thetai_names <- c("beta[i1]", "beta[i2]", "sigma[i]")
par(mfrow = c(1,3), mar = c(2,2,4,.5))
for(ii in 1:ncol(Thetai_plot)) {
# approximate posterior
hist(Thetai_plot[,ii], breaks = 40, xlab = "", ylab = "",
main = parse(text = paste0("hat(p)(", thetai_names[ii],
"*\" | \"*bold(Y),bold(X))")))
# true parameter value
abline(v = thetai_true[ii], col = "red", lwd = 2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.