#' Data Input
#'
#' Reads an external data file. The format of the file is described in the \code{Details}
#' section. This function creates an object of class \code{mappoly.data}
#'
#' The first line of the input file contains the string \code{ploidy} followed by the ploidy level of the parents.
#' The second and third lines contain the strings \code{n.ind} and \code{n.mrk} followed by the number of individuals in
#' the dataset and the total number of markers, respectively. Lines number 4 and 5 contain the strings
#' \code{mrk.names} and \code{ind.names} followed by a sequence of the names of the markers and the name of the individuals,
#' respectively. Lines 6 and 7 contain the strings \code{dosageP} and \code{dosageQ} followed by a sequence of numbers
#' containing the dosage of all markers in parent \code{P} and \code{Q}. Line 8, contains the string seq followed by
#' a sequence of integer numbers indicating the chromosome each marker belongs. It can be any 'a priori'
#' information regarding the physical distance between markers. For example, these numbers could refer
#' to chromosomes, scaffolds or even contigs, in which the markers are positioned. If this information
#' is not available for a particular marker, NA should be used. If this information is not available for
#' any of the markers, the string \code{seq} should be followed by a single \code{NA}. Line number 9 contains the string
#' \code{seqpos} followed by the physical position of the markers into the sequence. The physical position can be
#' given in any unity of physical genomic distance (base pairs, for instance). However, the user should be
#' able to make decisions based on these values, such as the occurrence of crossing overs, etc. Line number 10
#' should contain the string \code{nphen} followed by the number of phenotypic traits. Line number 11 is skipped
#' (Usually used as a spacer). The next elements are strings containing the name of the phenotypic trait with no space characters
#' followed by the phenotypic values. The number of lines should be the same number of phenotypic traits.
#' \code{NA} represents missing values. The line number 12 + \code{nphen} is skipped. Finally, the last element is a table
#' containing the dosage for each marker (rows) for each individual (columns). \code{NA} represents missing values.
#'
#' @param file.in a character string with the name of (or full path to) the input file
#' which contains the data to be read
#'
#' @param filter.non.conforming if \code{TRUE} (default) converts data points with unexpected
#' genotypes (i.e. no double reduction) to 'NA'. See function \code{\link[mappoly]{segreg_poly}}
#' for information on expected classes and their respective frequencies.
#'
#' @param elim.redundant logical. If \code{TRUE} (default), removes redundant markers
#' during map construction, keeping them annotated to export to the final map.
#'
#' @param verbose if \code{TRUE} (default), the current progress is shown; if
#' \code{FALSE}, no output is produced
#'
#' @param x an object of class \code{mappoly.data}
#'
#' @param detailed if available, print the number of markers per sequence (default = FALSE)
#'
#' @param thresh.line position of a threshold line for p values of the segregation test (default = 10e-06)
#'
#' @param ... currently ignored
#'
#' @return An object of class \code{mappoly.data} which contains a
#' list with the following components:
#' \item{ploidy}{ploidy level}
#' \item{n.ind}{number individuals}
#' \item{n.mrk}{total number of markers}
#' \item{ind.names}{the names of the individuals}
#' \item{mrk.names}{the names of the markers}
#' \item{dosage.p1}{a vector containing the dosage in
#' parent P for all \code{n.mrk} markers}
#' \item{dosage.p2}{a vector containing the dosage in
#' parent Q for all \code{n.mrk} markers}
#' \item{chrom}{a vector indicating which sequence each marker
#' belongs. Zero indicates that the marker was not assigned to any
#' sequence}
#' \item{genome.pos}{Physical position of the markers into the
#' sequence}
#' \item{seq.ref}{NULL (unused in this type of data)}
#' \item{seq.alt}{NULL (unused in this type of data)}
#' \item{all.mrk.depth}{NULL (unused in this type of data)}
#' \item{geno.dose}{a matrix containing the dosage for each markers (rows)
#' for each individual (columns). Missing data are represented by
#' \code{ploidy_level + 1}}
#' \item{n.phen}{number of phenotypic traits}
#' \item{phen}{a matrix containing the phenotypic data. The rows
#' correspond to the traits and the columns correspond
#' to the individuals}
#' \item{kept}{if elim.redundant = TRUE, holds all non-redundant markers}
#' \item{elim.correspondence}{if elim.redundant = TRUE, holds all non-redundant markers and
#' its equivalence to the redundant ones}
#' @examples
#' \donttest{
#' #### Tetraploid Example
#' fl1 = "https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/SolCAP_dosage"
#' tempfl <- tempfile()
#' download.file(fl1, destfile = tempfl)
#' SolCAP.dose <- read_geno(file.in = tempfl)
#' print(SolCAP.dose, detailed = TRUE)
#' plot(SolCAP.dose)
#'}
#' @author Marcelo Mollinari, \email{mmollin@ncsu.edu}
#'
#' @references
#'
#' Mollinari M., Olukolu B. A., Pereira G. da S.,
#' Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020),
#' Unraveling the Hexaploid Sweetpotato Inheritance
#' Using Ultra-Dense Multilocus Mapping,
#' _G3: Genes, Genomes, Genetics_.
#' \doi{10.1534/g3.119.400620}
#'
#' Mollinari, M., and Garcia, A. A. F. (2019) Linkage
#' analysis and haplotype phasing in experimental autopolyploid
#' populations with high ploidy level using hidden Markov
#' models, _G3: Genes, Genomes, Genetics_.
#' \doi{10.1534/g3.119.400378}
#'
#' @export read_geno
read_geno <- function(file.in, filter.non.conforming = TRUE, elim.redundant = TRUE, verbose = TRUE) {
## get ploidy level ----------------------
temp <- scan(file.in , what = character(), sep = " ", nlines = 1, quiet = TRUE)
ploidy <- na.omit(as.numeric(temp[2]))
## get number of individuals -------------
temp <- scan(file.in , what = character(), sep = " ", skip = 1, nlines = 1, quiet = TRUE)
n.ind <- na.omit(as.numeric(temp[2]))
## get number of markers -----------------
temp <- scan(file.in , what = character(), sep = " ", skip = 2, nlines = 1, quiet = TRUE)
n.mrk <- na.omit(as.numeric(temp[2]))
## get marker names ----------------------
temp <- scan(file.in , what = character(), sep = " ", skip = 3, nlines = 1, quiet = TRUE)
temp <- temp[!temp == ""]
if (length(temp) - 1 != n.mrk)
stop("\n\t\t----------------------------------
Number of markers and length of marker
names vector do not match.
Please, check data.
--------------------------------------\n")
mrk.names <- na.omit(temp[-1])
## get individual names ------------------
temp <- scan(file.in , what = character(), sep = " ", skip = 4, nlines = 1, quiet = TRUE)
temp <- temp[!temp == ""]
if (length(temp) - 1 != n.ind)
stop("\n\t\t----------------------------------
Number of individuals and length of
individual names vector do not match.
Please, check data.
--------------------------------------\n")
ind.names <- na.omit(temp[-1])
## get dosage in parent P ----------------
temp <- scan(file.in, what = character(), sep = " ", skip = 5, nlines = 1, quiet = TRUE)
temp <- temp[!temp == ""]
dosage.p1 <- na.omit(as.integer(temp[-1]))
if (length(dosage.p1) != n.mrk)
stop("\n\t\t--------------------------------------------------
The number of markers and the length of the dosage
vector for parent P do not match.\n
Please, check data.
--------------------------------------------------\n")
## get dosage in parent Q ----------------
temp <- scan(file.in, what = character(), sep = " ", skip = 6, nlines = 1, quiet = TRUE)
temp <- temp[!temp == ""]
dosage.p2 <- na.omit(as.integer(temp[-1]))
if (length(dosage.p2) != n.mrk)
stop("\n\t\t--------------------------------------------------
The number of markers and the length of the dosage
vector for parent Q do not match.\n
Please, check data.
--------------------------------------------------\n")
## monomorphic markers
dp <- abs(abs(dosage.p1-(ploidy/2))-(ploidy/2))
dq <- abs(abs(dosage.p2-(ploidy/2))-(ploidy/2))
id <- dp+dq != 0
## get chromosome info ---------------------
temp <- scan(file.in , what = character(), sep = " ", skip = 7, nlines = 1, quiet = TRUE)
temp <- temp[!temp == ""]
if (length(temp) - 1 != n.mrk && length(temp) - 1 > 1)
stop("\n\t\t-------------------------------------
Number of sequence indices and number of
markers do not match.
Please, check data.
------------------------------------------\n")
chrom <- as.integer(temp[-1])
## get sequence position info ------------
temp <- scan(file.in , what = character(), sep = " ", skip = 8, nlines = 1, quiet = TRUE)
temp <- temp[!temp == ""]
if (length(temp) - 1 != n.mrk && length(temp) - 1 > 1)
stop("\n\t\t--------------------------------------------------
The number of sequence positions and the number of
markers do not match\n.
Please, check data.
--------------------------------------------------\n")
sequencepos <- as.numeric(temp[-1])
names(sequencepos) <- names(chrom) <- names(dosage.p2) <- names(dosage.p1) <- mrk.names
## checking for phenotypic info ----------
temp <- scan(file.in , what = character(), sep = " ", skip = 9, quiet = TRUE)
nphen <- na.omit(as.numeric(temp[2]))
phen <- NULL
if (nphen > 0) {
phen <- read.table(file.in , skip = 11, row.names = 1, col.names = c("mrk", ind.names), colClasses = c("character", rep("numeric", n.ind)), nrows = nphen,
comment.char = "")
}
if (verbose){
cat("Reading the following data:")
cat("\n Ploidy level:", ploidy)
cat("\n No. individuals: ", n.ind)
cat("\n No. markers: ", n.mrk)
cat("\n No. informative markers: ", sum(id), " (", round(100*sum(id)/n.mrk,1), "%)", sep = "")
if (all(unique(nphen) != 0))
cat("\n This dataset contains phenotypic information.")
if (length(sequence) > 1)
cat("\n This dataset contains chromosome information.")
cat("\n ...\n")
}
## get genotypic info --------------------
geno.dose <- read.table(file.in , skip = 12 + nphen)
if(nrow(geno.dose) != length(mrk.names))
stop("\n\t\t-------------------------------------
Number of marker names is different from
the number of markers in the dataset.
Please, check data.
------------------------------------------\n")
if(ncol(geno.dose) != length(ind.names))
stop("\n\t\t-------------------------------------
Number of individual names is different from
the number of individuals in the dataset.
Please, check data.
------------------------------------------\n")
dimnames(geno.dose) <- list(mrk.names, ind.names)
geno.dose[is.na(geno.dose)] <- ploidy + 1
## returning the 'mappoly.data' object
if (verbose) cat("\n Done with reading.\n")
geno.dose <- geno.dose[id,]
res <- structure(list(ploidy = ploidy,
n.ind = n.ind,
n.mrk = sum(id),
ind.names = ind.names,
mrk.names = mrk.names[id],
dosage.p1 = dosage.p1[id],
dosage.p2 = dosage.p2[id],
chrom = chrom[id],
genome.pos = sequencepos[id],
seq.ref = NULL,
seq.alt = NULL,
all.mrk.depth = NULL,
prob.thres = NULL,
geno.dose = geno.dose,
nphen = nphen,
phen = phen,
kept = NULL,
elim.correspondence = NULL),
class = "mappoly.data")
if(filter.non.conforming){
if (verbose) cat(" Filtering non-conforming markers.\n ...")
res <- filter_non_conforming_classes(res)
if (verbose) cat("\n Performing chi-square test.\n ...")
##Computing chi-square p.values
Ds <- array(NA, dim = c(ploidy+1, ploidy+1, ploidy+1))
for(i in 0:ploidy)
for(j in 0:ploidy)
Ds[i+1,j+1,] <- segreg_poly(ploidy = ploidy, dP = i, dQ = j)
Dpop <- cbind(res$dosage.p1, res$dosage.p2)
M <- t(apply(Dpop, 1, function(x) Ds[x[1]+1, x[2]+1,]))
dimnames(M) <- list(res$mrk.names, c(0:ploidy))
M <- cbind(M, res$geno.dose)
res$chisq.pval <- apply(M, 1, mrk_chisq_test, ploidy = ploidy)
if (verbose) cat("\n Done.\n")
}
if (elim.redundant){
seqred = make_seq_mappoly(res, arg = 'all', data.name = res)
redun = elim_redundant(seqred, data = res)
if (nrow(redun$elim.correspondence) < 1) return(res)
res$kept = redun$kept
res$elim.correspondence = redun$elim.correspondence
mrks.rem = match(res$elim.correspondence$elim, res$mrk.names)
res$elim.correspondence$chrom = res$chrom[c(mrks.rem)]
res$elim.correspondence$genome.pos = res$genome.pos[c(mrks.rem)]
res$elim.correspondence$seq.ref = NA
res$elim.correspondence$seq.alt = NA
res$elim.correspondence$all.mrk.depth = NA
res$n.mrk = length(res$kept)
res$mrk.names = res$mrk.names[-c(mrks.rem)]
res$geno.dose = res$geno.dose[-c(mrks.rem),]
res$dosage.p1 = res$dosage.p1[-c(mrks.rem)]
res$dosage.p2 = res$dosage.p2[-c(mrks.rem)]
res$chrom = res$chrom[-c(mrks.rem)]
res$genome.pos = res$genome.pos[-c(mrks.rem)]
res$chisq.pval = res$chisq.pval[-c(mrks.rem)]
}
return(res)
}
#' @rdname read_geno
#' @export
print.mappoly.data <- function(x, detailed = FALSE, ...) {
cat("This is an object of class 'mappoly.data'\n")
cat(" Ploidy level: ", x$ploidy, "\n")
cat(" No. individuals: ", x$n.ind, "\n")
cat(" No. markers: ", x$n.mrk, "\n")
if(!is.null(x$prob.thres))
cat(" Prob. threshold to declare missing: ", x$prob.thres, "\n")
miss <- round(100*sum(x$geno.dose == x$ploidy+1)/length(as.matrix(x$geno.dose)),2)
if(!is.null(x$kept)){
redundant = round(100*(nrow(x$elim.correspondence)/(length(x$kept)+nrow(x$elim.correspondence))),2)
}
cat(" Missing data: ", miss, "%\n", sep = "")
if(!is.null(x$kept)){
cat(" Redundant markers: ", redundant, "%\n", sep = "")
}
w <- table(x$chrom)
if (length(w) <= 1)
cat("\n No. markers per chromosome: not available") else if (detailed) {
cat("\n ----------\n No. markers per chromosome:\n")
print(data.frame(seq = paste0(" ", names(w)), No.mrk = as.numeric(w)), row.names = FALSE)
cat(" ----------\n")
cat(paste0(" Markers with no chromosome information: ", sum(is.na(x$chrom))))
} else cat("\n This dataset contains chromosome information.")
cat("\n ----------\n No. of markers per dosage combination in both parents:\n")
freq <- table(paste(x$dosage.p1, x$dosage.p2, sep = "-"))
d.temp <- matrix(unlist(strsplit(names(freq), "-")), ncol = 2, byrow = TRUE)
print(data.frame(P1 = paste0(" ", d.temp[, 1]), P2 = d.temp[, 2], freq = as.numeric(freq)), row.names = FALSE)
if (x$nphen != 0)
cat("\n This dataset contains phenotypic information.\n")
}
#' @rdname read_geno
#' @export
#' @importFrom graphics barplot layout mtext image legend
#' @importFrom grDevices colorRampPalette
#' @importFrom grDevices blues9
plot.mappoly.data <- function(x, thresh.line = 10e-6, ...)
{
freq <- table(paste(x$dosage.p1, x$dosage.p2, sep = "-"))
d.temp <- matrix(unlist(strsplit(names(freq), "-")), ncol = 2, byrow = TRUE)
type <- apply(d.temp, 1, function(x,ploidy) paste0(sort(abs(abs(as.numeric(x)-(ploidy/2))-(ploidy/2))), collapse = ""), ploidy = x$ploidy)
type.names <- names(table(type))
mrk.dist <- as.numeric(freq)
names(mrk.dist) <- apply(d.temp, 1 , paste, collapse = "-")
#w <- c("#FFFFFF", "#F0F0F0", "#D9D9D9", "#BDBDBD", "#969696",
# "#737373", "#525252", "#252525", "#000000")
#pal <- colorRampPalette(w)(length(type.names))
oldpar <- par(mar = c(5,4,1,2))
on.exit(par(oldpar))
layout(matrix(c(1,1,1,2,3,3,6,4,5), 3, 3), widths = c(1.2,3,.5), heights = c(1.5,2,3))
barplot(mrk.dist, las = 2, #col = pal[match(type, type.names)],
xlab = "Number of markers",
ylab = "Dosage combination", horiz = TRUE)
if(is.null(x$chisq.pval))
{
plot(0, 0, axes = FALSE, xlab = "", ylab = "", type = "n")
text(x = 0, y = 0, labels = "No segregation test", cex = 2)
} else{
par(mar = c(1,1,1,2))
par(xaxs = "i")
plot(log10(x$chisq.pval), axes = FALSE, xlab = "", ylab = "", pch = 16,
col = rgb(red = 0.25, green = 0.64, blue = 0.86, alpha = 0.3))
axis(4, line = 1)
mtext(text = bquote(log[10](P)), side = 4, line = 4, cex = .7)
lines(x = c(0, x$n.mrk), y = rep(log10(thresh.line),2), col = 2, lty = 2)
}
par(mar = c(5,1,0,2))
pal <- c("black", colorRampPalette(c("#D73027", "#F46D43", "#FDAE61", "#FEE090",
"#FFFFBF", "#E0F3F8", "#ABD9E9", "#74ADD1",
"#4575B4"))(x$ploidy + 1))
names(pal) <- c(-1:x$ploidy)
M <- as.matrix(x$geno.dose)
M[M == x$ploidy+1] <- -1
image(x = 1:nrow(M), z = M, axes = FALSE, xlab = "",
col = pal[as.character(sort(unique(as.vector(M))))], useRaster = TRUE)
mtext(text = "Markers", side = 1, line = .4)
mtext(text = "Individuals", side = 2, line = .2)
par(mar = c(0,0,0,0))
plot(0:10,0:10, type = "n", axes = FALSE, xlab = "", ylab = "")
legend(0,10,
horiz = FALSE,
legend = c("missing", 0:x$ploidy),
pch = 22,
pt.cex = 3,
pt.bg = pal, pt.lwd = 0,
bty = "n", xpd = TRUE)
if(!is.null(x$elim.correspondence)){
par(mar = c(5,0,2,2))
red = round(100*nrow(x$elim.correspondence)/(length(x$kept)+nrow(x$elim.correspondence)),1)
mat = matrix(c(100-red, red), ncol = 1)
w = barplot(mat, main = "",
xlab = "", col = c(blues9[3],blues9[6]),
axes = F, width = .5, border = NA, xlim = c(0,1))
text(w, c((100-red)/2, 100 - red/2), c(paste0(100 - red, " %"), paste0(red, " %")))
mtext(text = "Unique vs. Redundant", line = -1, side = 4, cex = .8)
}
par(mfrow = c(1,1))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.