1 |
x |
|
con |
|
tr |
|
alpha |
|
nboot |
|
pr |
|
SEED |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, con = 0, tr = 0.2, alpha = 0.05, nboot = 599, pr = TRUE,
SEED = TRUE)
{
if (is.data.frame(x))
x = as.matrix(x)
if (pr) {
print("Note: confidence intervals are adjusted to control FWE")
print("But p-values are not adjusted to control FWE")
}
con <- as.matrix(con)
if (is.matrix(x))
x <- listm(x)
if (!is.list(x))
stop("Data must be stored in a matrix or in list mode.")
J <- length(x)
for (j in 1:J) {
xx <- x[[j]]
x[[j]] <- xx[!is.na(xx)]
}
Jm <- J - 1
d <- (J^2 - J)/2
if (sum(con^2) == 0) {
con <- matrix(0, J, d)
id <- 0
for (j in 1:Jm) {
jp <- j + 1
for (k in jp:J) {
id <- id + 1
con[j, id] <- 1
con[k, id] <- 0 - 1
}
}
}
if (nrow(con) != length(x))
stop("The number of groups does not match the number of contrast coefficients.")
bvec <- array(0, c(J, 2, nboot))
if (SEED)
set.seed(2)
if (pr)
print("Taking bootstrap samples. Please wait.")
nsam = matl(lapply(x, length))
for (j in 1:J) {
paste("Working on group ", j)
xcen <- x[[j]] - mean(x[[j]], tr)
data <- matrix(sample(xcen, size = length(x[[j]]) * nboot,
replace = TRUE), nrow = nboot)
bvec[j, , ] <- apply(data, 1, trimparts, tr)
}
m1 <- bvec[, 1, ]
m2 <- bvec[, 2, ]
boot <- matrix(0, ncol(con), nboot)
for (d in 1:ncol(con)) {
top <- apply(m1, 2, trimpartt, con[, d])
consq <- con[, d]^2
bot <- apply(m2, 2, trimpartt, consq)
boot[d, ] <- abs(top)/sqrt(bot)
}
testb <- apply(boot, 2, max)
ic <- floor((1 - alpha) * nboot)
testb <- sort(testb)
psihat <- matrix(0, ncol(con), 4)
test <- matrix(0, ncol(con), 4)
dimnames(psihat) <- list(NULL, c("con.num", "psihat", "ci.lower",
"ci.upper"))
dimnames(test) <- list(NULL, c("con.num", "test", "se", "p.value"))
for (d in 1:ncol(con)) {
test[d, 1] <- d
psihat[d, 1] <- d
testit <- lincon(x, con[, d], tr, pr = FALSE)
test[d, 2] <- testit$test[1, 2]
pval <- mean((abs(testit$test[1, 2]) < boot[d, ]))
test[d, 4] <- pval
psihat[d, 3] <- testit$psihat[1, 2] - testb[ic] * testit$test[1,
4]
psihat[d, 4] <- testit$psihat[1, 2] + testb[ic] * testit$test[1,
4]
psihat[d, 2] <- testit$psihat[1, 2]
test[d, 3] <- testit$test[1, 4]
}
list(n = nsam, psihat = psihat, test = test, crit = testb[ic],
con = con)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.