tests/testthat/test-random.R

rxTest({

  warn1 <- function(code) {
    if (rxCores() == 1L) {
      x <- force(code)
    } else {
      expect_warning(x <- force(code))
    }
    x
  }

  test_that("rnorm", {

    rxWithSeed(1024, {
      rx <- rxode2({
        x1 <- rnorm()
        x2 <- rxnorm(a)
        x3 <- rnorm(b, c)
        d / dt(x0) <- 0
      })

      ev <- et(1, id = 1:70000)

      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 2))

      expect_equal(mean(f$x1), 0, tolerance = 1e-2)
      expect_equal(sd(f$x1), 1, tolerance = 1e-2)

      expect_equal(mean(f$x2), 3, tolerance = 1e-2)
      expect_equal(sd(f$x1), 1, tolerance = 1e-2)

      expect_equal(mean(f$x3), 5, tolerance = 1e-2)
      expect_equal(sd(f$x3), 2, tolerance = 1e-2)

      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      expect_equal(mean(f2$x1), 0, tolerance = 1e-2)
      expect_equal(sd(f2$x1), 1, tolerance = 1e-2)

      expect_equal(mean(f2$x2), 3, tolerance = 1e-2)
      expect_equal(sd(f2$x1), 1, tolerance = 1e-2)

      expect_equal(mean(f2$x3), 5, tolerance = 1e-2)
      expect_equal(sd(f2$x3), 2, tolerance = 1e-2)

      suppressMessages(expect_error(rxode2({
        x4 <- rnorm(a, b, c, d)
      })))

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      x <- suppressMessages(rxnorm(n = 1e5))
      expect_equal(mean(x), 0, tolerance = 0.01)

      expect_equal(sd(x), 1, tolerance = 0.01)
    })
  })

  test_that("rbinom", {

    rx <- rxode2({
      x1 <- rbinom(4, 0.5)
      x2 <- rxbinom(10, 0.75)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      expect_equal(max(f$x1), 4)
      expect_equal(min(f$x1), 0)
      expect_true(all(round(f$x1) == f$x1))
      expect_equal(mean(f$x1), 4 * 0.5, tolerance = 1e-2)
      expect_equal(sd(f$x1), sqrt(4 * 0.5 * 0.5), tolerance = 1e-2)

      expect_equal(max(f$x2), 10)
      expect_true(min(f$x2) > 0)
      expect_true(all(round(f$x2) == f$x2))

      expect_equal(mean(f$x2), 10 * 0.75, tolerance = 1e-2)
      expect_equal(sd(f$x2), sqrt(10 * 0.75 * 0.25), tolerance = 1e-2)

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rbinom()
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rbinom(a)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rbinom(a, b, c)
      })))
    })

  })

  test_that("rcauchy", {

    rxWithSeed(1024, {
      rx <- rxode2({
        x1 <- rcauchy()
        x2 <- rxcauchy(a)
        x3 <- rcauchy(b, c)
        d / dt(x0) <- 0
      })

      ev <- et(1, id = 1:100)

      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 2))
      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x4 <- rcauchy(a, b, c, d)
      })))
    })

  })

  test_that("rchisq", {

    rx <- rxode2({
      x1 <- rchisq(15)
      x2 <- rxchisq(20)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      expect_equal(mean(f$x1), 15, tolerance = 0.1)
      expect_equal(sd(f$x1), sqrt(2 * 15), tolerance = 0.1)

      expect_equal(mean(f$x2), 20, tolerance = 0.1)
      expect_equal(sd(f$x2), sqrt(2 * 20), tolerance = 0.1)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))


      suppressMessages(expect_error(rxode2({
        x1 <- rchisq()
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rchisq(a, b)
      })))

    })
  })

  test_that("rexp tests", {

    rx <- rxode2({
      x1 <- rexp(0.5)
      x2 <- rxexp()
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      expect_equal(mean(f$x1), 2, tolerance = 0.1)
      expect_equal(sd(f$x1), sqrt(1 / (0.5 * 0.5)), tolerance = 0.1)

      expect_equal(mean(f$x2), 1, tolerance = 0.1)
      expect_equal(sd(f$x2), 1, tolerance = 0.1)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rexp(a, b)
      })))
    })

  })

  test_that("rf tests", {

    rx <- rxode2({
      x1 <- rf(10, 20)
      x2 <- rxf(30, 40)
    })

    ev <- et(1, id = 1:40000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      sf <- function(d1, d2) {
        sqrt((2 * d2^2 * (d1 + d2 - 2)) / (d1 * (d2 - 2)^2 * (d2 - 4)))
      }

      mf <- function(d2) {
        return(d2 / (d2 - 2))
      }

      expect_equal(mean(f$x1), mf(20), tolerance = 0.01)
      expect_equal(sd(f$x1), sf(10, 20), tolerance = 0.01)

      expect_equal(mean(f$x2), mf(40), tolerance = 0.01)
      expect_equal(sd(f$x2), sf(30, 40), tolerance = 0.01)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rf(a, b, c)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rf(a)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rf()
      })))

    })
  })

  test_that("rgamma tests", {

    rx <- rxode2({
      x1 <- rgamma(9, 0.5)
      x2 <- rxgamma(7.5)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      sgamma <- function(k, theta = 1) {
        sqrt(k / (theta^2))
      }

      expect_equal(sd(f$x1), sgamma(9, 0.5), tolerance = 0.01)

      expect_equal(sd(f$x2), sgamma(7.5), tolerance = 0.01)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rgamma(a, b, c)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rgamma()
      })))

    })
  })

  test_that("rbeta tests", {

    rx <- rxode2({
      x1 <- rbeta(2, 5)
      x2 <- rxbeta(2, 2)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))


      mbeta <- function(a, b) {
        return(a / (a + b))
      }
      sbeta <- function(a, b) {
        sqrt(a * b / ((a + b)^2 * (a + b + 1)))
      }

      expect_equal(mean(f$x1), mbeta(2, 5), tolerance = 0.01)
      # Using tolerance=0.02 for the Mac random number generator
      expect_equal(sd(f$x1), sbeta(2, 5), tolerance = 0.02)

      expect_equal(mean(f$x2), mbeta(2, 2), tolerance = 0.01)
      expect_equal(sd(f$x2), sbeta(2, 2), tolerance = 0.01)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rbeta(a, b, c)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rbeta(a)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rbeta()
      })))
    })

  })

  test_that("rgeom tests", {

    rx <- rxode2({
      # x1 <- rgeom(0.5)
      x2 <- rxgeom(0.1)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      # expect_equal(median(f$x1), -ceiling(1 / log2(1 - 0.5)))
      expect_equal(median(f$x2), -ceiling(1 / log2(1 - 0.1)))

      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rgeom()
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rgeom(a, b)
      })))

    })
  })

  test_that("rpois", {

    rx <- rxode2({
      x1 <- rpois(1)
      x2 <- rxpois(2)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      expect_equal(mean(f$x1), 1, tolerance = 0.01)
      expect_equal(sd(f$x1), 1, tolerance = 0.01)

      expect_equal(mean(f$x2), 2, tolerance = 0.01)
      expect_equal(sd(f$x2), sqrt(2), tolerance = 0.01)
      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rpois()
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rxpois(a, b)
      })))
    })

  })

  test_that("rt", {

    rx <- rxode2({
      x1 <- rt(15)
      x2 <- rxt(20)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      expect_equal(mean(f$x1), 0, tolerance = 0.1)
      expect_equal(sd(f$x1), sqrt(15 / (15 - 2)), tolerance = 0.1)

      expect_equal(mean(f$x2), 0, tolerance = 0.1)
      expect_equal(sd(f$x2), sqrt(20 / (20 - 2)), tolerance = 0.1)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))


      suppressMessages(expect_error(rxode2({
        x1 <- rt()
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rt(a, b)
      })))

    })
  })

  test_that("runif", {

    rxWithSeed(1024, {

      rx <- rxode2({
        x1 <- runif()
        x2 <- rxunif(a)
        x3 <- runif(b, c)
        d / dt(x0) <- 0
      })

      ev <- et(1, id = 1:30000)

      f <- suppressMessages(rxSolve(rx, ev, c(a = 0.5, b = 0.25, c = 0.75), cores = 2))

      expect_equal(mean(f$x1), 0.5, tolerance = 1e-2)
      expect_equal(sd(f$x1), sqrt(1 / 12), tolerance = 1e-2)

      expect_equal(mean(f$x2), 0.5 * (0.5 + 1), tolerance = 1e-2)
      expect_equal(sd(f$x2), sqrt((1 - 0.5)^2 / 12), tolerance = 1e-2)

      expect_equal(mean(f$x3), 0.5 * (0.25 + 0.75), tolerance = 1e-2)
      expect_equal(sd(f$x3), sqrt((0.75 - 0.25)^2 / 12), tolerance = 1e-2)

      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 0.5, b = 0.25, c = 0.75), cores = 1))

      expect_equal(mean(f2$x1), 0.5, tolerance = 1e-2)
      expect_equal(sd(f2$x1), sqrt(1 / 12), tolerance = 1e-2)

      expect_equal(mean(f2$x2), 0.5 * (0.5 + 1), tolerance = 1e-2)
      expect_equal(sd(f2$x2), sqrt((1 - 0.5)^2 / 12), tolerance = 1e-2)

      expect_equal(mean(f2$x3), 0.5 * (0.25 + 0.75), tolerance = 1e-2)
      expect_equal(sd(f2$x3), sqrt((0.75 - 0.25)^2 / 12), tolerance = 1e-2)

      suppressMessages(expect_error(rxode2({
        x4 <- runif(a, b, c, d)
      })))

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

    })
  })


  test_that("rweibull tests", {

    rx <- rxode2({
      x1 <- rweibull(9, 0.5)
      x2 <- rxweibull(7.5)
    })

    ev <- et(1, id = 1:30000)

    rxWithSeed(1024, {
      f <- suppressMessages(rxSolve(rx, ev, cores = 2))

      mweibull <- function(shape, scale = 1) {
        lambda <- scale
        k <- shape
        lambda * gamma(1 + 1 / k)
      }

      sweibull <- function(shape, scale = 1) {
        lambda <- scale
        k <- shape
        sqrt(lambda^2 * (gamma(1 + 2 / k)
          - (gamma(1 + 1 / k))^2))
      }

      expect_equal(mean(f$x1), mweibull(9, 0.5), tolerance = 0.01)
      expect_equal(sd(f$x1), sweibull(9, 0.5), tolerance = 0.01)

      expect_equal(mean(f$x2), mweibull(7.5), tolerance = 0.01)
      expect_equal(sd(f$x2), sweibull(7.5), tolerance = 0.01)

      ## Seed tests

      ## Make sure seeds are reproducible
      ev <- et(1, id = 1:10)

      set.seed(1)
      f <- suppressMessages(rxSolve(rx, ev, cores = 1))

      set.seed(1)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))
      expect_equal(as.data.frame(f), as.data.frame(f2))

      ## Make sure different seed value gives different result
      set.seed(2)
      f2 <- suppressMessages(rxSolve(rx, ev, cores = 1))

      expect_false(isTRUE(all.equal(as.data.frame(f), as.data.frame(f2))))

      suppressMessages(expect_error(rxode2({
        x1 <- rweibull(a, b, c)
      })))

      suppressMessages(expect_error(rxode2({
        x1 <- rweibull()
      })))

    })
  })

  test_that("individual random variable tests", {
    rx <- rxode2({
      x0 <- rxnorm()
      x1 <- rinorm(a)
      x2 <- rinorm(b, c)
      x3 <- rinorm()
      x7 <- ricauchy()
      x8 <- ricauchy(a)
      x9 <- ricauchy(b, c)
      x10 <- richisq(15)
      x11 <- riexp(0.5)
      x12 <- rif(10, 20)
      x13 <- rigamma(9, 0.5)
      x14 <- rigamma(7.5)
      x15 <- rit(20)
      x16 <- riunif()
      x17 <- riunif(a)
      x18 <- riunif(b, c)
      x19 <- riweibull(9, 0.5)
      x20 <- riweibull(7.5)
      ## int, likely to repeat
      x21 <- ripois(1)
      x22 <- ribeta(2, 5) ## ?
      x23 <- rigeom(0.5)
      x24 <- ribinom(10, 0.5)
      ##
      d / dt(xx) <- 0
    })

    rxWithSeed(10, {
      ev <- et(c(1, 2), id = 1:5)

      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 2))

      expect_equal(sum(duplicated(f$x0)), 0)

      for (i in 1:20) {
        expect_equal(sum(duplicated(paste0(f$id, f[[paste0("x", i)]]))), 5)
        .s <- sum(duplicated(f[[paste0("x", i)]]))
        expect_true(.s < 10)
      }

      rx <- rxode2({
        x0 <- rxnorm()
        x1 <- rinorm(a)
        x2 <- rinorm(b, c)
        x3 <- rinorm()
        x7 <- ricauchy()
        x8 <- ricauchy(a)
        x9 <- ricauchy(b, c)
        x10 <- richisq(15)
        x11 <- riexp(0.5)
        x12 <- rif(10, 20)
        x13 <- rigamma(9, 0.5)
        x14 <- rigamma(7.5)
        x15 <- rit(20)
        x16 <- riunif()
        x17 <- riunif(a)
        x18 <- riunif(b, c)
        x19 <- riweibull(9, 0.5)
        x20 <- riweibull(7.5)
        ## int, likely to repeat
        x21 <- ripois(1)
        x22 <- ribeta(2, 5) ## ?
        x23 <- rigeom(0.5)
        x24 <- ribinom(10, 0.5)
        ##
      })

      set.seed(10)

      ev <- et(c(1, 2), id = 1:5)

      f <- suppressMessages(rxSolve(rx, ev, c(a = 3, b = 5, c = 2), cores = 2))

      expect_equal(sum(duplicated(f$x0)), 0)

      for (i in 1:20) {
        expect_equal(sum(duplicated(paste0(f$id, f[[paste0("x", i)]]))), 5)
        .s <- sum(duplicated(f[[paste0("x", i)]]))
        expect_true(.s < 10)
      }
    })

  })

  test_that("simeps", {

    rx1 <- rxode2({
      c <- 0 + err
      i <- 0
    })

    e <- et(0, 10)

    rxWithSeed(10, {

      f1 <- suppressMessages(rxSolve(rx1, e, sigma = lotri(err ~ 1)))

      expect_true(f1$c[1] != 0)

      rx <- rxode2({
        c <- 0 + err
        i <- 0
        while (c < 0) {
          simeps()
          c <- 0 + err
          i <- i + 1
          if (i > 10) break
        }
      })

      set.seed(10)
      f2 <- suppressMessages(rxSolve(rx, e, sigma = lotri(err ~ 1)))

      expect_true(f2$c[1] != 0)

      expect_false(all(f1$c > 0))

      expect_true(all(f2$c > 0))

      f3 <- f2[f2$i == 0, c("time", "c")]

      f3 <- merge(f1, f3, by = "time")

      ## If the condition is already satisfied, it should keep the originally simulated values
      expect_equal(f3$c.x, f3$c.y)


      set.seed(10)
      f1 <- suppressMessages(rxSolve(rx, e, sigma = lotri(err ~ 1), nStud = 3))

      expect_true(all(f1$c > 0))

      expect_true(f1$c[1] != 0)

      set.seed(10)
      f2 <- suppressMessages(rxSolve(rx1, e, sigma = lotri(err ~ 1), nStud = 3))

      expect_false(all(f2$c > 0))

      expect_true(f2$c[1] != 0)

      f3 <- merge(f1, f2, by = c("sim.id", "time"))

      f3 <- f3[f3$i == 0, ]

      expect_equal(f3$c.x, f3$c.y)

      set.seed(10)
      f1 <- suppressMessages(rxSolve(rx, e, sigma = lotri(err ~ 1), nStud = 3, dfObs = 100))

      expect_true(all(f1$c > 0))

      expect_true(f1$c[1] != 0)


      set.seed(10)
      f2 <- suppressMessages(rxSolve(rx1, e, sigma = lotri(err ~ 1), nStud = 3, dfObs = 100))

      expect_false(all(f2$c > 0))

      expect_true(f2$c[1] != 0)

      f3b <- merge(f1, f2, by = c("sim.id", "time"))

      f3b <- f3b[f3b$i == 0, ]

      expect_equal(f3b$c.x, f3b$c.y)

      expect_false(identical(f3b$c.x, f3$c.x))
      expect_false(identical(f3b$c.y, f3$c.y))

      ## Check to make sure that this only accesses the
      f1 <- suppressMessages(rxSolve(rx, e, sigma = lotri(err ~ 1), nStud = 3))

      expect_true(all(f1$c > 0))

      expect_true(f1$c[1] != 0)
    })
  })

  test_that("simeta", {
    rx <- rxode2({
      wt <- 70 * exp(eta.wt)
      i <- 0
      while ((wt < 60) || (wt > 80)) {
        i <- i + 1
        if (i > 100) break
        simeta()
        wt <- 70 * exp(eta.wt)
      }
    })
    rxWithPreserveSeed({
      e <- et(1:2, id = 1:4)

      f <- suppressMessages(rxSolve(rx, e, omega = lotri(eta.wt ~ 0.1^2)))

      expect_true(all(f$wt > 60))
      expect_true(all(f$wt < 80))

      expect_equal(length(unique(f$wt)), 4)

      f <- suppressMessages(rxSolve(rx, e, omega = lotri(eta.wt ~ 0.5^2), nStud = 10))

      expect_true(all(f$wt > 60))
      expect_true(all(f$wt < 80))

      expect_equal(length(unique(f$wt)), 4 * 10)

      ## this one should work
      f <- suppressMessages(rxSolve(rx, e, omega = lotri(eta.wt ~ 0.5^2), nStud = 3, dfSub = 40))

      expect_true(all(f$wt > 60))
      expect_true(all(f$wt < 80))

      expect_equal(length(unique(f$wt)), 4 * 3)

    })
  })

  test_that("random variables work in R alone", {
    rxWithSeed(1024, {

      expect_true(is.numeric(rxcauchy()))

      p <- rxpois(2, n = 30000)
      expect_equal(mean(p), 2, tolerance = 0.01)
      expect_equal(sd(p), sqrt(2), tolerance = 0.01)

      r <- rxt(15, n = 30000)
      expect_equal(mean(r), 0, tolerance = 0.1)
      expect_equal(sd(r), sqrt(15 / (15 - 2)), tolerance = 0.1)

      r <- rxbinom(4, 0.5, n = 30000)
      expect_equal(max(r), 4)
      expect_equal(min(r), 0)
      expect_equal(mean(r), 4 * 0.5, tolerance = 1e-2)
      expect_equal(sd(r), sqrt(4 * 0.5 * 0.5), tolerance = 1e-2)

      chi <- rxchisq(15, n = 30000)
      expect_equal(mean(chi), 15, tolerance = 0.1)
      expect_equal(sd(chi), sqrt(2 * 15), tolerance = 0.1)

      xp <- rxexp(0.5, n = 30000)
      expect_equal(mean(xp), 2, tolerance = 0.1)
      expect_equal(sd(xp), sqrt(1 / (0.5 * 0.5)), tolerance = 0.1)

      f <- rxf(30, 40, n = 30000)

      sf <- function(d1, d2) {
        sqrt((2 * d2^2 * (d1 + d2 - 2)) / (d1 * (d2 - 2)^2 * (d2 - 4)))
      }

      mf <- function(d2) {
        return(d2 / (d2 - 2))
      }

      expect_equal(mean(f), mf(40), tolerance = 0.01)
      expect_equal(sd(f), sf(30, 40), tolerance = 0.1)

      x2 <- rxgamma(7.5, n = 30000)

      sgamma <- function(k, theta = 1) {
        sqrt(k / (theta^2))
      }

      ## expect_equal(sd(x2), sgamma(7.5), tolerance = 0.01)

      x2 <- rxbeta(2, 2, n = 30000)

      mbeta <- function(a, b) {
        return(a / (a + b))
      }

      sbeta <- function(a, b) {
        sqrt(a * b / ((a + b)^2 * (a + b + 1)))
      }

      expect_equal(mean(x2), mbeta(2, 2), tolerance = 0.01)
      expect_equal(sd(x2), sbeta(2, 2), tolerance = 0.01)

      x2 <- rxgeom(0.1, n = 30000)

      expect_equal(median(x2), -ceiling(1 / log2(1 - 0.1)))

      x2 <- rxpois(2, n = 30000)

      expect_equal(mean(x2), 2, tolerance = 0.01)
      expect_equal(sd(x2), sqrt(2), tolerance = 0.01)

      x2 <- rxunif(0.5, n = 30000)

      expect_equal(mean(x2), 0.5 * (0.5 + 1), tolerance = 1e-2)
      expect_equal(sd(x2), sqrt((1 - 0.5)^2 / 12), tolerance = 1e-2)

      x2 <- rxweibull(7.5, n = 30000)

      mweibull <- function(shape, scale = 1) {
        lambda <- scale
        k <- shape
        lambda * gamma(1 + 1 / k)
      }

      sweibull <- function(shape, scale = 1) {
        lambda <- scale
        k <- shape
        sqrt(lambda^2 * (gamma(1 + 2 / k)
          - (gamma(1 + 1 / k))^2))
      }

      expect_equal(mean(x2), mweibull(7.5), tolerance = 0.01)
      expect_equal(sd(x2), sweibull(7.5), tolerance = 0.01)
    })

  })


  test_that("rxord", {

    rxWithSeed(1024, {
      rx <- rxode2({
        tmp2 <- rxord(0.5)
        tmp3 <- rxord(0.33, 0.33)
        tmp4 <- rxord(0.25, 0.25, 0.25)
      })

      n <- 100000
      ev <- et(seq(1, n))

      f <- rxSolve(rx, ev)

      expect_equal(round(as.numeric(table(f$tmp2))/ n, 3), c(0.5, 0.5), tolerance=1e-2)
      expect_equal(round(as.numeric(table(f$tmp3))/n, 3), c(0.33, 0.33, 0.33), tolerance=1e-1)
      expect_equal(round(as.numeric(table(f$tmp4))/n, 3), c(0.25, 0.25, 0.25, 0.25), tolerance=1e-2)

      tmp2 <- vapply(seq(1, n), function(i){ rxord(0.5) }, numeric(1), USE.NAMES=TRUE)

      expect_equal(round(as.numeric(table(tmp2))/ n, 3), c(0.5, 0.5), tolerance=1e-2)

      tmp3 <- vapply(seq(1, n), function(i){ rxord(0.33, 0.33) }, numeric(1), USE.NAMES=TRUE)
      expect_equal(round(as.numeric(table(tmp3))/ n, 3), c(0.33, 0.33, 0.33), tolerance=1e-1)

      tmp4 <- vapply(seq(1, n), function(i){ rxord(0.25, 0.25, 0.25) }, numeric(1), USE.NAMES=TRUE)
      expect_equal(round(as.numeric(table(tmp4))/ n, 3), c(0.25, 0.25, 0.25, 0.25), tolerance=1e-2)

    })


  })

  test_that("rnorm", {
    rxWithSeed(1024, {
      x <- rxnorm(n = 1e5)
      expect_equal(mean(x), 0, tolerance = 0.01)
      expect_equal(sd(x), 1, tolerance = 0.01)
    })
  })

  test_that("random variables work in R alone", {
    rxWithSeed(1024, {
      expect_true(is.numeric(rxcauchy()))

      p <- rxpois(2, n = 30000)
      expect_equal(mean(p), 2, tolerance = 0.01)
      expect_equal(sd(p), sqrt(2), tolerance = 0.01)

      r <- rxt(15, n = 30000)
      expect_equal(mean(r), 0, tolerance = 0.1)
      expect_equal(sd(r), sqrt(15 / (15 - 2)), tolerance = 0.1)

      r <- rxbinom(4, 0.5, n = 30000)
      expect_equal(max(r), 4)
      expect_equal(min(r), 0)
      expect_equal(mean(r), 4 * 0.5, tolerance = 1e-2)
      expect_equal(sd(r), sqrt(4 * 0.5 * 0.5), tolerance = 1e-2)

      chi <- rxchisq(15, n = 30000)
      expect_equal(mean(chi), 15, tolerance = 0.1)
      expect_equal(sd(chi), sqrt(2 * 15), tolerance = 0.1)

      xp <- rxexp(0.5, n = 30000)
      expect_equal(mean(xp), 2, tolerance = 0.1)
      expect_equal(sd(xp), sqrt(1 / (0.5 * 0.5)), tolerance = 0.1)

      f <- rxf(30, 40, n = 30000)

      sf <- function(d1, d2) {
        sqrt((2 * d2^2 * (d1 + d2 - 2)) / (d1 * (d2 - 2)^2 * (d2 - 4)))
      }

      mf <- function(d2) {
        return(d2 / (d2 - 2))
      }

      expect_equal(mean(f), mf(40), tolerance = 0.01)
      expect_equal(sd(f), sf(30, 40), tolerance = 0.1)

      x2 <- rxgamma(7.5, n = 30000)

      sgamma <- function(k, theta = 1) {
        sqrt(k / (theta^2))
      }

      ## expect_equal(sd(x2), sgamma(7.5), tolerance = 0.01)

      x2 <- rxbeta(2, 2, n = 30000)

      mbeta <- function(a, b) {
        return(a / (a + b))
      }

      sbeta <- function(a, b) {
        sqrt(a * b / ((a + b)^2 * (a + b + 1)))
      }

      expect_equal(mean(x2), mbeta(2, 2), tolerance = 0.01)
      expect_equal(sd(x2), sbeta(2, 2), tolerance = 0.01)

      x2 <- rxgeom(0.1, n = 30000)

      expect_equal(median(x2), -ceiling(1 / log2(1 - 0.1)))

      x2 <- rxpois(2, n = 30000)

      expect_equal(mean(x2), 2, tolerance = 0.01)
      expect_equal(sd(x2), sqrt(2), tolerance = 0.01)

      x2 <- rxunif(0.5, n = 30000)

      expect_equal(mean(x2), 0.5 * (0.5 + 1), tolerance = 1e-2)
      expect_equal(sd(x2), sqrt((1 - 0.5)^2 / 12), tolerance = 1e-2)

      x2 <- rxweibull(7.5, n = 30000)

      mweibull <- function(shape, scale = 1) {
        lambda <- scale
        k <- shape
        lambda * gamma(1 + 1 / k)
      }

      sweibull <- function(shape, scale = 1) {
        lambda <- scale
        k <- shape
        sqrt(lambda^2 * (gamma(1 + 2 / k)
          - (gamma(1 + 1 / k))^2))
      }

      expect_equal(mean(x2), mweibull(7.5), tolerance = 0.01)
      expect_equal(sd(x2), sweibull(7.5), tolerance = 0.01)
    })

  })

})
nlmixr2/rxode2 documentation built on Jan. 11, 2025, 8:48 a.m.