directIPW: Direct (bounded) IPW estimator for the expected outcome over...

Description Usage Arguments Value Examples

View source: R/main_estimation.R

Description

Direct (bounded) IPW estimator for the expected outcome over time (can be time-to-event or not).

Usage

1
directIPW(wts_data, OData, weights, trunc_weights = 10^6, return_wts = FALSE)

Arguments

wts_data

data.table returned by a single call to getIPWeights. Must contain the treatment/monitoring estimated IPTW weights for a SINGLE rule.

OData

The object returned by function fitPropensity. Contains the input data and the previously fitted propensity score models for the exposure, monitoring and right-censoring.

weights

(NOT IMPLEMENTED) Optional data.table with additional observation-time-specific weights. Must contain columns ID, t and weight. The column named weight is merged back into the original data according to (ID, t).

trunc_weights

(NOT IMPLEMENTED) Specify the numeric weight truncation value. All final weights exceeding the value in trunc_weights will be truncated.

return_wts

Return the data.table with subject-specific IP weights as part of the output. Note: for large datasets setting this to TRUE may lead to extremely large object sizes!

Value

A data.table with bounded IPW estimates of risk and survival by time.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
options(stremr.verbose = TRUE)
require("data.table")

# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c("ID", "t"))

# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]

# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]

# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
                    CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")

# ----------------------------------------------------------------------
# Look at the input data object
# ----------------------------------------------------------------------
print(OData)

# ----------------------------------------------------------------------
# Access the input data
# ----------------------------------------------------------------------
get_data(OData)

# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))

# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
             survNPMSM(OData) %$%
             estimates
AKME.St.1

# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
            directIPW(OData)
IPW.St.1[]

# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, tbreaks = c(1:8,12,16)-1,)
survMSM_res$St

# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:10)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params <- gridisl::defModel(estimator = "speedglm__glm")

## Not run: 
gcomp_est <- fit_GCOMP(OData, tvals = t.surv, intervened_TRT = "TI.set1",
                          Qforms = Qforms, models = params, stratifyQ_by_rule = FALSE)
gcomp_est[]

## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run: 
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
                    Qforms = Qforms, models = params, stratifyQ_by_rule = TRUE)
tmle_est[]

## End(Not run)

# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)

# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR)

# ----------------------------------------------------------------------
# Fitting treatment model with Gradient Boosting machines:
# ----------------------------------------------------------------------
## Not run: 
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# Use `H2O-3` distributed implementation of GLM for treatment model estimator:
models_TRT <- sl3::Lrnr_h2o_glm$new(family = "binomial")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# Use Deep Neural Nets:
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "deeplearning")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

## End(Not run)

# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run: 
params_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm",
                              ntrees = 50,
                              learn_rate = 0.05,
                              sample_rate = 0.8,
                              col_sample_rate = 0.8,
                              balance_classes = TRUE)
params_CENS <- sl3::Lrnr_glm_fast$new()
params_MONITOR <- sl3::Lrnr_glm_fast$new()
OData <- fitPropensity(OData,
            gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
            gform_TRT = gform_TRT, params_TRT = params_TRT,
            gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)

## End(Not run)

# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
                           ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                           col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, models = models,
            stratifyQ_by_rule = TRUE)

## End(Not run)

## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
                           ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                           col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, models = models,
            stratifyQ_by_rule = FALSE)

## End(Not run)

osofr/stremr documentation built on Jan. 25, 2022, 8:07 a.m.