Description Usage Arguments Value Examples
View source: R/main_estimation.R
Defines and fits estimators for the propensity scores, separately for censoring, treatment and monitoring events. When there is right-censoring and/or not intervening on monitoring, only the propensity score model for treatment will be estimated.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | fitPropensity(
OData,
gform_CENS,
gform_TRT,
gform_MONITOR,
stratify_CENS = NULL,
stratify_TRT = NULL,
stratify_MONITOR = NULL,
models_CENS = NULL,
models_TRT = NULL,
models_MONITOR = NULL,
fit_method = stremrOptions("fit_method"),
fold_column = stremrOptions("fold_column"),
reg_CENS,
reg_TRT,
reg_MONITOR,
use_weights = FALSE,
verbose = getOption("stremr.verbose"),
...
)
|
OData |
Input data object created by |
gform_CENS |
Specify the regression formula for the right-censoring mechanism, in the format "CensVar1 + CensVar2 ~ Predictor1 + Predictor2". Leave as missing for data with no right-censoring. |
gform_TRT |
Specify the regression formula for the treatment mechanism, in the format "TRTVar1 + TRTVar2 ~ Predictor1 + Predictor2". |
gform_MONITOR |
Specify the regression formula for the treatment mechanism, in the format "TRTVar1 + TRTVar2 ~ Predictor1 + Predictor2". Leave as missing for data with no monitoring events or when not intervening on monitoring. |
stratify_CENS |
Define strata(s) for each censoring variable from |
stratify_TRT |
Define strata(s) for treatment model(s).
Must be a list of logical expressions (input the expression as character strings).
When missing (default), the treatment model(s) are fit by pooling all available (uncensored) observations, across all time-points.
The rules are the same as for |
stratify_MONITOR |
Define strata(s) for monitoring model(s).
Must be a list of logical expressions (input the expression as character strings).
When missing (default), the monitoring model is fit by pooling all available (uncensored) observations, across all time-points.
The rules are the same as for |
models_CENS |
Optional parameter specifying the models for fitting the censoring mechanism(s) with
|
models_TRT |
Optional parameter specifying the models for fitting the treatment (exposure) mechanism(s)
with |
models_MONITOR |
Optional parameter specifying the models for fitting the monitoring mechanism with
|
fit_method |
Model selection approach. Can be |
fold_column |
The column name in the input data (ordered factor) that contains the fold IDs to be used as part of the validation sample.
Use the provided function |
reg_CENS |
(ADVANCED FEATURE). Manually define and input the regression specification for each strata of censoring model,
using the function |
reg_TRT |
(ADVANCED FEATURE). Manually define and input the regression specification for each strata of treatment model,
using the function |
reg_MONITOR |
(ADVANCED FEATURE). Manually define and input the regression specification for each strata of monitoring model,
using the function |
use_weights |
(NOT IMPLEMENTED) Set to |
verbose |
Set to |
... |
When all or some of the |
...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | options(stremr.verbose = TRUE)
require("data.table")
# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c("ID", "t"))
# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]
# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]
# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")
# ----------------------------------------------------------------------
# Look at the input data object
# ----------------------------------------------------------------------
print(OData)
# ----------------------------------------------------------------------
# Access the input data
# ----------------------------------------------------------------------
get_data(OData)
# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))
# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
survNPMSM(OData) %$%
estimates
AKME.St.1
# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
directIPW(OData)
IPW.St.1[]
# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, tbreaks = c(1:8,12,16)-1,)
survMSM_res$St
# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:10)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params <- gridisl::defModel(estimator = "speedglm__glm")
## Not run:
gcomp_est <- fit_GCOMP(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = params, stratifyQ_by_rule = FALSE)
gcomp_est[]
## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run:
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = params, stratifyQ_by_rule = TRUE)
tmle_est[]
## End(Not run)
# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)
# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
gform_MONITOR = gform_MONITOR)
# ----------------------------------------------------------------------
# Fitting treatment model with Gradient Boosting machines:
# ----------------------------------------------------------------------
## Not run:
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# Use `H2O-3` distributed implementation of GLM for treatment model estimator:
models_TRT <- sl3::Lrnr_h2o_glm$new(family = "binomial")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# Use Deep Neural Nets:
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "deeplearning")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
## End(Not run)
# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run:
params_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm",
ntrees = 50,
learn_rate = 0.05,
sample_rate = 0.8,
col_sample_rate = 0.8,
balance_classes = TRUE)
params_CENS <- sl3::Lrnr_glm_fast$new()
params_MONITOR <- sl3::Lrnr_glm_fast$new()
OData <- fitPropensity(OData,
gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
gform_TRT = gform_TRT, params_TRT = params_TRT,
gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)
## End(Not run)
# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run:
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = models,
stratifyQ_by_rule = TRUE)
## End(Not run)
## Not run:
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = models,
stratifyQ_by_rule = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.