importData: Import data, define various nodes, define dummies for factor...

Description Usage Arguments Value Examples

View source: R/main_estimation.R

Description

Import data, define various nodes, define dummies for factor columns and define OData R6 object

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
importData(
  data,
  ID = "Subject_ID",
  t_name = "time_period",
  covars,
  CENS = NULL,
  TRT = "A",
  MONITOR = NULL,
  OUTCOME = "Y",
  weights = NULL,
  noCENScat = 0L,
  remove_extra_rows = TRUE,
  verbose = getOption("stremr.verbose")
)

Arguments

data

Input data in long format. Can be a data.frame or a data.table with named columns, containing the time-varying covariates (covars), the right-censoring event indicator(s) (CENS), the exposure variable(s) (TRT), the monitoring process variable(s) (MONITOR) and the survival OUTCOME variable (OUTCOME).

ID

Unique subject identifier column name in data.

t_name

The name of the time/period variable in data.

covars

Vector of names with time varying and baseline covariates in data. This argument does not need to be specified, by default all variables that are not in ID, t, CENS, TRT, MONITOR and OUTCOME will be considered as covariates.

CENS

Column name of the censoring variable(s) in data. Leave as missing if not intervening on censoring / no right-censoring in the input data. Each separate variable specified in CENS can be either binary (0/1 valued integer) or categorical (integer). For binary indicators of CENSoring, the value of 1 indicates the CENSoring or end of follow-up event (this cannot be changed). For categorical CENSoring variables, by default the value of 0 indicates no CENSoring / continuation of follow-up and other values indicate different reasons for CENSoring. Use the argument noCENScat to change the reference (continuation of follow-up) category from default 0 to any other value. (NOTE: Changing noCENScat has zero effect on coding of the binary CENSoring variables, those have to always use 1 to code the CENSoring event). Note that factors are not allowed in CENS.

TRT

A column name in data for the exposure/treatment variable(s).

MONITOR

A column name in data for the indicator(s) of monitoring events. Leave as missing if not intervening on monitoring.

OUTCOME

A column name in data for the survival OUTCOME variable name, code as 1 for the outcome event.

weights

Optional column name in data that contains subject- and time-specific weights.

noCENScat

The level (integer) that indicates CONTINUATION OF FOLLOW-UP for ALL censoring variables. Defaults is 0. Use this to modify the default reference category (no CENSoring / continuation of follow-up) for variables specifed in CENS.

remove_extra_rows

Remove extra rows after the event of interest (survival outcome) has occurred (OUTCOME=1). Set this to FALSE for non-survival data (i.e., when the outcome is not time-to-event and new observations may occur after OUTCOME = 1).

verbose

Set to TRUE to print messages on status and information to the console. Turn this on by default using options(stremr.verbose=TRUE).

Value

...

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
options(stremr.verbose = TRUE)
require("data.table")

# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c("ID", "t"))

# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]

# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]

# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
                    CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")

# ----------------------------------------------------------------------
# Look at the input data object
# ----------------------------------------------------------------------
print(OData)

# ----------------------------------------------------------------------
# Access the input data
# ----------------------------------------------------------------------
get_data(OData)

# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))

# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
             survNPMSM(OData) %$%
             estimates
AKME.St.1

# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
            directIPW(OData)
IPW.St.1[]

# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, tbreaks = c(1:8,12,16)-1,)
survMSM_res$St

# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:10)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params <- gridisl::defModel(estimator = "speedglm__glm")

## Not run: 
gcomp_est <- fit_GCOMP(OData, tvals = t.surv, intervened_TRT = "TI.set1",
                          Qforms = Qforms, models = params, stratifyQ_by_rule = FALSE)
gcomp_est[]

## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run: 
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
                    Qforms = Qforms, models = params, stratifyQ_by_rule = TRUE)
tmle_est[]

## End(Not run)

# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)

# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR)

# ----------------------------------------------------------------------
# Fitting treatment model with Gradient Boosting machines:
# ----------------------------------------------------------------------
## Not run: 
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# Use `H2O-3` distributed implementation of GLM for treatment model estimator:
models_TRT <- sl3::Lrnr_h2o_glm$new(family = "binomial")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# Use Deep Neural Nets:
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "deeplearning")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

## End(Not run)

# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run: 
params_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm",
                              ntrees = 50,
                              learn_rate = 0.05,
                              sample_rate = 0.8,
                              col_sample_rate = 0.8,
                              balance_classes = TRUE)
params_CENS <- sl3::Lrnr_glm_fast$new()
params_MONITOR <- sl3::Lrnr_glm_fast$new()
OData <- fitPropensity(OData,
            gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
            gform_TRT = gform_TRT, params_TRT = params_TRT,
            gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)

## End(Not run)

# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
                           ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                           col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, models = models,
            stratifyQ_by_rule = TRUE)

## End(Not run)

## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
                           ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                           col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, models = models,
            stratifyQ_by_rule = FALSE)

## End(Not run)

osofr/stremr documentation built on Jan. 25, 2022, 8:07 a.m.