Description Usage Arguments Value Examples
View source: R/main_estimation.R
Import data, define various nodes, define dummies for factor columns and define OData R6 object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
data |
Input data in long format. Can be a |
ID |
Unique subject identifier column name in |
t_name |
The name of the time/period variable in |
covars |
Vector of names with time varying and baseline covariates in |
CENS |
Column name of the censoring variable(s) in |
TRT |
A column name in |
MONITOR |
A column name in |
OUTCOME |
A column name in |
weights |
Optional column name in |
noCENScat |
The level (integer) that indicates CONTINUATION OF FOLLOW-UP for ALL censoring variables. Defaults is 0.
Use this to modify the default reference category (no CENSoring / continuation of follow-up)
for variables specifed in |
remove_extra_rows |
Remove extra rows after the event of interest (survival outcome) has occurred (OUTCOME=1). Set this to FALSE for non-survival data (i.e., when the outcome is not time-to-event and new observations may occur after OUTCOME = 1). |
verbose |
Set to |
...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | options(stremr.verbose = TRUE)
require("data.table")
# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c("ID", "t"))
# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]
# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]
# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")
# ----------------------------------------------------------------------
# Look at the input data object
# ----------------------------------------------------------------------
print(OData)
# ----------------------------------------------------------------------
# Access the input data
# ----------------------------------------------------------------------
get_data(OData)
# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))
# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
survNPMSM(OData) %$%
estimates
AKME.St.1
# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
directIPW(OData)
IPW.St.1[]
# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, tbreaks = c(1:8,12,16)-1,)
survMSM_res$St
# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:10)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params <- gridisl::defModel(estimator = "speedglm__glm")
## Not run:
gcomp_est <- fit_GCOMP(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = params, stratifyQ_by_rule = FALSE)
gcomp_est[]
## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run:
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = params, stratifyQ_by_rule = TRUE)
tmle_est[]
## End(Not run)
# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)
# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
gform_MONITOR = gform_MONITOR)
# ----------------------------------------------------------------------
# Fitting treatment model with Gradient Boosting machines:
# ----------------------------------------------------------------------
## Not run:
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# Use `H2O-3` distributed implementation of GLM for treatment model estimator:
models_TRT <- sl3::Lrnr_h2o_glm$new(family = "binomial")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# Use Deep Neural Nets:
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "deeplearning")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
## End(Not run)
# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run:
params_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm",
ntrees = 50,
learn_rate = 0.05,
sample_rate = 0.8,
col_sample_rate = 0.8,
balance_classes = TRUE)
params_CENS <- sl3::Lrnr_glm_fast$new()
params_MONITOR <- sl3::Lrnr_glm_fast$new()
OData <- fitPropensity(OData,
gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
gform_TRT = gform_TRT, params_TRT = params_TRT,
gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)
## End(Not run)
# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run:
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = models,
stratifyQ_by_rule = TRUE)
## End(Not run)
## Not run:
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = models,
stratifyQ_by_rule = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.