fit_iterTMLE: Iterative TMLE wrapper for 'fit_GCOMP'

Description Usage Arguments Value See Also Examples

View source: R/tmle.R

Description

Calls fit_GCOMP with argument iterTMLE = TRUE.

Usage

1

Arguments

...

Arguments that will be passed down to the underlying function fit_GCOMP

Value

data.table with survival by time for sequential GCOMP and iterative TMLE

See Also

fit_GCOMP

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
options(stremr.verbose = TRUE)
require("data.table")

# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c("ID", "t"))

# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]

# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]

# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
                    CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")

# ----------------------------------------------------------------------
# Look at the input data object
# ----------------------------------------------------------------------
print(OData)

# ----------------------------------------------------------------------
# Access the input data
# ----------------------------------------------------------------------
get_data(OData)

# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))

# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
             survNPMSM(OData) %$%
             estimates
AKME.St.1

# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
            directIPW(OData)
IPW.St.1[]

# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, tbreaks = c(1:8,12,16)-1,)
survMSM_res$St

# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:10)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params <- gridisl::defModel(estimator = "speedglm__glm")

## Not run: 
gcomp_est <- fit_GCOMP(OData, tvals = t.surv, intervened_TRT = "TI.set1",
                          Qforms = Qforms, models = params, stratifyQ_by_rule = FALSE)
gcomp_est[]

## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run: 
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
                    Qforms = Qforms, models = params, stratifyQ_by_rule = TRUE)
tmle_est[]

## End(Not run)

# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)

# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR)

# ----------------------------------------------------------------------
# Fitting treatment model with Gradient Boosting machines:
# ----------------------------------------------------------------------
## Not run: 
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# Use `H2O-3` distributed implementation of GLM for treatment model estimator:
models_TRT <- sl3::Lrnr_h2o_glm$new(family = "binomial")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# Use Deep Neural Nets:
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "deeplearning")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        models_TRT = models_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

## End(Not run)

# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run: 
params_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm",
                              ntrees = 50,
                              learn_rate = 0.05,
                              sample_rate = 0.8,
                              col_sample_rate = 0.8,
                              balance_classes = TRUE)
params_CENS <- sl3::Lrnr_glm_fast$new()
params_MONITOR <- sl3::Lrnr_glm_fast$new()
OData <- fitPropensity(OData,
            gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
            gform_TRT = gform_TRT, params_TRT = params_TRT,
            gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)

## End(Not run)

# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
                           ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                           col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, models = models,
            stratifyQ_by_rule = TRUE)

## End(Not run)

## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
                           ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                           col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, models = models,
            stratifyQ_by_rule = FALSE)

## End(Not run)

osofr/stremr documentation built on Jan. 25, 2022, 8:07 a.m.