Description Usage Arguments Value See Also Examples
Interventions on up to 3 nodes are allowed: CENS
, TRT
and MONITOR
.
TMLE adjustment will be based on the inverse of the propensity score fits for the observed likelihood (g0.C, g0.A, g0.N),
multiplied by the indicator of not being censored and the probability of each intervention in intervened_TRT
and intervened_MONITOR
.
Requires column name(s) that specify the counterfactual node values or the counterfactual probabilities of each node being 1 (for stochastic interventions).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | fit_GCOMP(
OData,
tvals,
Qforms,
intervened_TRT = NULL,
intervened_MONITOR = NULL,
rule_name = paste0(c(intervened_TRT, intervened_MONITOR), collapse = ""),
models = NULL,
fit_method = stremrOptions("fit_method"),
fold_column = stremrOptions("fold_column"),
TMLE = FALSE,
stratifyQ_by_rule = FALSE,
stratify_by_last = TRUE,
Qstratify = NULL,
useonly_t_TRT = NULL,
useonly_t_MONITOR = NULL,
iterTMLE = FALSE,
CVTMLE = FALSE,
byfold_Q = FALSE,
IPWeights = NULL,
trunc_weights = 10^6,
weights = NULL,
max_iter = 15,
adapt_stop = TRUE,
adapt_stop_factor = 10,
tol_eps = 0.001,
parallel = FALSE,
return_wts = FALSE,
return_fW = FALSE,
reg_Q = NULL,
intervened_type_TRT = NULL,
intervened_type_MONITOR = NULL,
maxpY = 1,
TMLE_updater = "TMLE.updater.speedglm",
verbose = getOption("stremr.verbose"),
...
)
|
OData |
Input data object created by |
tvals |
Vector of time-points in the data for which the survival function (and risk) should be estimated |
Qforms |
Regression formulas, one formula per Q. Only main-terms are allowed. |
intervened_TRT |
Column name in the input data with the probabilities (or indicators) of counterfactual treatment nodes being equal to 1 at each time point.
Leave the argument unspecified ( |
intervened_MONITOR |
Column name in the input data with probabilities (or indicators) of counterfactual monitoring nodes being equal to 1 at each time point.
Leave the argument unspecified ( |
rule_name |
Optional name for the treatment/monitoring regimen. |
models |
Optional parameters specifying the models for fitting the iterative (sequential) G-Computation formula.
Must be an object of class |
fit_method |
Model selection approach. Can be either |
fold_column |
The column name in the input data (ordered factor) that contains the fold IDs to be used as part of the validation sample.
Use the provided function |
TMLE |
Set to |
stratifyQ_by_rule |
Set to |
stratify_by_last |
Only used when |
Qstratify |
Placeholder for future user-defined model stratification for fitting Qs (CURRENTLY NOT FUNCTIONAL, WILL RESULT IN ERROR). |
useonly_t_TRT |
Use for intervening only on some subset of observation and time-specific treatment nodes.
Should be a character string with a logical expression that defines the subset of intervention observations.
For example, using |
useonly_t_MONITOR |
Same as |
iterTMLE |
Set to |
CVTMLE |
Set to |
byfold_Q |
(ADVANCED USE) Fit iterative means (Q parameter) using "by-fold" (aka "fold-specific" or "split-specific") cross-validation approach.
Only works with |
IPWeights |
(Optional) result of calling function |
trunc_weights |
Specify the numeric weight truncation value. All final weights exceeding the value in |
weights |
Optional |
max_iter |
For iterative TMLE only: Integer, set to maximum number of iterations for iterative TMLE algorithm. |
adapt_stop |
For iterative TMLE only: Choose between two stopping criteria for iterative TMLE, default is |
adapt_stop_factor |
For iterative TMLE only: The adaptive factor to choose the stopping criteria for iterative TMLE when
|
tol_eps |
For iterative TMLE only: Numeric error tolerance for the iterative TMLE update.
The iterative TMLE algorithm will stop when the absolute value of the TMLE intercept update is below |
parallel |
Set to |
return_wts |
Applies only when |
return_fW |
When |
reg_Q |
(ADVANCED USE ONLY) Directly specify the Q regressions, separately for each time-point. |
intervened_type_TRT |
(ADVANCED FUNCTIONALITY) Set to |
intervened_type_MONITOR |
(ADVANCED FUNCTIONALITY) Same as |
maxpY |
Maximum probability that the cumulative incidence of the outcome Y(t) is equal to 1. Useful for upper-bounding the rare-outcomes. |
TMLE_updater |
Function for performing the TMLE update. Default is the TMLE updater based on speedglm (called |
verbose |
Set to |
... |
When |
An output list containing the data.table
with survival estimates over time saved as "estimates"
.
stremr-package
for the general overview of the package.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | options(stremr.verbose = TRUE)
require("data.table")
# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c("ID", "t"))
# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]
# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]
# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")
# ----------------------------------------------------------------------
# Look at the input data object
# ----------------------------------------------------------------------
print(OData)
# ----------------------------------------------------------------------
# Access the input data
# ----------------------------------------------------------------------
get_data(OData)
# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))
# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
survNPMSM(OData) %$%
estimates
AKME.St.1
# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
directIPW(OData)
IPW.St.1[]
# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, tbreaks = c(1:8,12,16)-1,)
survMSM_res$St
# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:10)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params <- gridisl::defModel(estimator = "speedglm__glm")
## Not run:
gcomp_est <- fit_GCOMP(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = params, stratifyQ_by_rule = FALSE)
gcomp_est[]
## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run:
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = params, stratifyQ_by_rule = TRUE)
tmle_est[]
## End(Not run)
# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)
# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
gform_MONITOR = gform_MONITOR)
# ----------------------------------------------------------------------
# Fitting treatment model with Gradient Boosting machines:
# ----------------------------------------------------------------------
## Not run:
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# Use `H2O-3` distributed implementation of GLM for treatment model estimator:
models_TRT <- sl3::Lrnr_h2o_glm$new(family = "binomial")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
# Use Deep Neural Nets:
models_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "deeplearning")
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
gform_TRT = gform_TRT,
models_TRT = models_TRT,
gform_MONITOR = gform_MONITOR,
stratify_CENS = stratify_CENS)
## End(Not run)
# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run:
params_TRT <- sl3::Lrnr_h2o_grid$new(algorithm = "gbm",
ntrees = 50,
learn_rate = 0.05,
sample_rate = 0.8,
col_sample_rate = 0.8,
balance_classes = TRUE)
params_CENS <- sl3::Lrnr_glm_fast$new()
params_MONITOR <- sl3::Lrnr_glm_fast$new()
OData <- fitPropensity(OData,
gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
gform_TRT = gform_TRT, params_TRT = params_TRT,
gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)
## End(Not run)
# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run:
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = models,
stratifyQ_by_rule = TRUE)
## End(Not run)
## Not run:
t.surv <- c(0:5)
Qforms <- rep.int("Qkplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
models <- sl3::Lrnr_h2o_grid$new(algorithm = "randomForest",
ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fit_TMLE(OData, tvals = t.surv, intervened_TRT = "TI.set1",
Qforms = Qforms, models = models,
stratifyQ_by_rule = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.