#' @name NMW
#'
#' @title
#' The Almaki and Yuan's modified Weibull distribution
#'
#' @description
#' Density, distribution function, quantile function,
#' random generation and hazard function for the Almaki and Yuan's modified weibull distribution with
#' parameters \code{alpha}, \code{beta}, \code{theta}, \code{gamma} and \code{lambda}.
#'
#' @param x,q vector of quantiles.
#' @param p vector of probabilities.
#' @param n number of observations.
#' @param alpha parameter one.
#' @param beta parameter two.
#' @param theta parameter three.
#' @param gamma parameter four.
#' @param lambda parameter five.
#' @param log,log.p logical; if TRUE, probabilities p are given as log(p).
#' @param lower.tail logical; if TRUE (default), probabilities are
#' P[X <= x], otherwise, P[X > x].
#'
#' @details
#' The Almaki and Yuans modified weibull with parameters \code{alpha},
#' \code{beta}, \code{theta}, \code{gamma} and \code{lambda} has density given by
#'
#' f(x)=(alpha*theta*x^(theta-1)+beta*(gamma+ lambda*x)*(x^(gamma-1)*exp(lambda*x)))*(exp((-alpha*x^theta)-(beta*x^gamma*exp(lambda*x)))
#'
#' for x>0.
#'
#' @return
#' \code{dNMW} gives the density, \code{pNMW} gives the distribution
#' function, \code{qNMW} gives the quantile function, \code{rNMW}
#' generates random deviates and \code{hNMW} gives the hazard function.
#'
#' @export
#' @examples
#' ## The probability density function
#' curve(dNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, to = 1.4, ylim = c(0, 3), col = "red", las = 1, ylab = "The probability density function")
#'
#' ## The cumulative distribution and the Reliability function
#' par(mfrow = c(1, 2))
#' curve(pNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, to = 1.4, col = "red", las = 1, ylab = "The cumulative distribution function")
#' curve(pNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2, lower.tail = FALSE), from = 0, to = 1.4, col = "red", las = 1, ylab = "The Reliability function")
#'
#' ## The quantile function
#' p <- seq(from = 0, to = 0.998, length.out = 100)
#' plot(x=qNMW(p, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), y = p, xlab = "Quantile", las = 1, ylab = "Probability")
#' curve(pNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, add = TRUE, col = "red")
#'
#' ## The random function
#' hist(rNMW(n = 1000, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), freq = FALSE, ylim = c(0, 3), xlab = "x", las = 1, main = "")
#' curve(dNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, ylim = c(0, 3), add = T, col = "red")
#'
#' ## The Hazard function
#' curve(hNMW(x, alpha = 1.15, beta = 0.15, theta = 0.75, gamma = 5, lambda = 2), from = 0, to = 1.5, ylim = c(0, 8), col = "red", ylab = "The hazard function", las = 1)
#'
dNMW<-function(x,alpha,beta,theta,gamma,lambda, log = FALSE){
if (any(x<0))
stop(paste("x must be positive", "\n", ""))
if (any(alpha<=0 ))
stop(paste("alpha must be positive", "\n", ""))
if (any(beta<=0))
stop(paste("beta must be positive", "\n", ""))
if (any(theta<=0))
stop(paste("theta must be positive", "\n", ""))
if (any(gamma<=0))
stop(paste("gamma must be positive", "\n", ""))
if (any(lambda<0))
stop(paste("lambda must be positive", "\n", ""))
loglik<- log(alpha*theta*(x^(theta-1)) + exp(lambda*x)*beta*(gamma+lambda*x)*x^(gamma-1)) -
alpha*(x^theta) - beta*(x^gamma)*exp(lambda*x)
if (log == FALSE)
density<- exp(loglik)
else
density <- loglik
return(density)
}
#' @export
#' @rdname NMW
pNMW <- function(q,alpha,beta,theta,gamma,lambda, lower.tail=TRUE, log.p = FALSE){
if (any(q<0))
stop(paste("q must be positive", "\n", ""))
if (any(alpha<=0 ))
stop(paste("alpha must be positive", "\n", ""))
if (any(beta<=0))
stop(paste("beta must be positive", "\n", ""))
if (any(theta<=0))
stop(paste("theta must be positive", "\n", ""))
if (any(gamma<=0))
stop(paste("gamma must be positive", "\n", ""))
if (any(lambda<0))
stop(paste("lambda must be positive", "\n", ""))
cdf <- 1-exp(-alpha*(q^theta) -beta*(q^gamma)*exp(lambda*q))
if (lower.tail == TRUE)
cdf <- cdf
else cdf <- 1 - cdf
if (log.p == FALSE)
cdf <- cdf
else cdf <- log(cdf)
cdf
}
#' @export
#' @rdname NMW
qNMW <- function(p,alpha,beta,theta,gamma,lambda, lower.tail = TRUE, log.p = FALSE){
if (any(alpha<=0 ))
stop(paste("alpha must be positive", "\n", ""))
if (any(beta<=0))
stop(paste("beta must be positive", "\n", ""))
if (any(theta<=0))
stop(paste("theta must be positive", "\n", ""))
if (any(gamma<=0))
stop(paste("gamma must be positive", "\n", ""))
if (any(lambda<0))
stop(paste("lambda must be positive", "\n", ""))
if (log.p == TRUE)
p <- exp(p)
else p <- p
if (lower.tail == TRUE)
p <- p
else p <- 1 - p
if (any(p < 0) | any(p > 1))
stop(paste("p must be between 0 and 1", "\n", ""))
fda <- function(x,alpha,beta,theta,gamma,lambda){
1-exp(-alpha*(x^theta) -beta*(x^gamma)*exp(lambda*x))
}
fda1 <- function(x, alpha,beta,theta,gamma,lambda, p) {fda(x, alpha,beta,theta,gamma,lambda) - p}
r_de_la_funcion <- function(alpha,beta,theta,gamma,lambda, p) {
uniroot(fda1, interval=c(0,1e+06), alpha,beta,theta,gamma,lambda, p)$root
}
r_de_la_funcion <- Vectorize(r_de_la_funcion)
q <- r_de_la_funcion(alpha,beta,theta,gamma,lambda, p)
q
}
#' @export
#' @rdname NMW
rNMW <- function(n,alpha,beta,theta,gamma,lambda){
if(any(n<=0))
stop(paste("n must be positive","\n",""))
if (any(alpha<=0 ))
stop(paste("alpha must be positive", "\n", ""))
if (any(beta<=0))
stop(paste("beta must be positive", "\n", ""))
if (any(theta<=0))
stop(paste("theta must be positive", "\n", ""))
if (any(gamma<=0))
stop(paste("gamma must be positive", "\n", ""))
if (any(lambda<0))
stop(paste("lambda must be positive", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qNMW(p,alpha,beta,theta,gamma,lambda)
r
}
#' @export
#' @rdname NMW
hNMW<-function(x,alpha,beta,theta,gamma,lambda, log = FALSE){
if (any(x<0))
stop(paste("x must be positive", "\n", ""))
if (any(alpha<=0 ))
stop(paste("alpha must be positive", "\n", ""))
if (any(beta<=0))
stop(paste("beta must be positive", "\n", ""))
if (any(theta<=0))
stop(paste("theta must be positive", "\n", ""))
if (any(gamma<=0))
stop(paste("gamma must be positive", "\n", ""))
if (any(lambda<0))
stop(paste("lambda must be positive", "\n", ""))
h <- dNMW(x,alpha,beta,theta,gamma,lambda, log = FALSE)/pNMW(q=x,alpha,beta,theta,gamma,lambda, lower.tail=FALSE, log.p = FALSE)
h
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.