# library(glmmTMB)
# library(sdmTMB)
# library(lme4)
# test_that("RE group factor levels are properly checked.", {
# expect_error(check_valid_factor_levels(c(1, 2, 3), "test"))
# expect_error(check_valid_factor_levels(c("A", "B")))
# x <- factor(c("a", "b", "c"))
# expect_true(check_valid_factor_levels(x))
# x <- x[-1]
# expect_error(check_valid_factor_levels(x, "test"))
# })
test_that("Model with random intercepts fits appropriately.", {
skip_on_cran()
skip_if_not_installed("glmmTMB")
skip_if_not_installed("lme4")
# Classic lme4 random effects model
data("sleepstudy", package="lme4")
lmer_fit <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML = FALSE)
glmmTMB_fit <- glmmTMB::glmmTMB(Reaction ~ Days + (Days | Subject), sleepstudy, REML = FALSE)
# Same model in sdmTMB
sdmTMB_fit <- sdmTMB(Reaction ~ Days + (Days | Subject), sleepstudy, spatial="off")
# with smoothers! (was broken)
sdmTMB_fit_smooth <- sdmTMB(Reaction ~ s(Days) + (Days | Subject), sleepstudy, spatial="off")
# demo MVN draws:
if (FALSE) {
object <- sdmTMB_fit
n_sims <- 200
tmb_sd <- object$sd_report
set.seed(1)
samps <- sdmTMB:::rmvnorm_prec(object$tmb_obj$env$last.par.best, tmb_sd, n_sims)
pars <- c(tmb_sd$par.fixed, tmb_sd$par.random)
pn <- names(pars)
samps[1:20,1:3]
b_j <- which(pn == "b_j")[2]
re_b_pars <- which(pn == "re_b_pars") # intercepts followed by random slopes here...
re <- samps[re_b_pars, ]
intercepts <- re[1:18,]
slopes <- re[19:36,]
b <- samps[b_j,,drop=FALSE]
out <- matrix(nrow = nrow(slopes), ncol = ncol(slopes))
for (i in 1:ncol(slopes)) {
out[,i] <- b[,i] + slopes[,i]
}
med <- apply(out, 1, quantile, probs = 0.50)
lwr <- apply(out, 1, quantile, probs = 0.05)
upr <- apply(out, 1, quantile, probs = 0.95)
plot(med, 1:18, xlim = range(c(lwr, upr)))
segments(lwr, 1:18, upr, 1:18)
}
ps1 <- predict(sdmTMB_fit_smooth)
ps2 <- predict(sdmTMB_fit_smooth, newdata = sleepstudy)
expect_equal(ps1$est, ps2$est, tolerance = 1e-4)
p0 <- predict(sdmTMB_fit, newdata = NULL)
p1 <- predict(lmer_fit, newdata = sleepstudy)
p2 <- predict(sdmTMB_fit, newdata = sleepstudy)
expect_equal(as.numeric(p1), p2$est, tolerance = 1e-4)
expect_equal(p0$est, p2$est, tolerance = 1e-4)
# fixed effect only prediction:
p0 <- predict(glmmTMB_fit, re.form = NA)
p1 <- predict(sdmTMB_fit, re_form_iid = NA)
expect_equal(p0, p1$est, tolerance = 1e-4)
# missing factor level:
ndtest <- sleepstudy
ndtest <- ndtest[ndtest$Subject != "308", ]
p1 <- predict(lmer_fit, newdata = ndtest)
p2 <- predict(sdmTMB_fit, newdata = ndtest)
expect_equal(as.numeric(p1), p2$est, tolerance = 1e-4)
# levels themselves missing:
ndtest <- sleepstudy
ndtest <- ndtest[ndtest$Subject == "308", ]
ndtest$Subject <- factor(as.character(ndtest$Subject))
p1 <- predict(lmer_fit, newdata = ndtest)
p2 <- predict(sdmTMB_fit, newdata = ndtest)
expect_equal(as.numeric(p1), p2$est, tolerance = 1e-4)
# Check fixed effects are identical
expect_equal(lme4::fixef(lmer_fit)[1], coef(sdmTMB_fit)[1])
expect_equal(lme4::fixef(lmer_fit)[2], coef(sdmTMB_fit)[2])
# Check likelihood / AIC identical
expect_equal(AIC(lmer_fit), AIC(sdmTMB_fit))
# Check variances and covariance of REs is equal
REs <- sdmTMB_fit$sd_report$value[grep("cov_pars", names(sdmTMB_fit$sd_report$value))]
expect_equal(as.numeric(attr(summary(lmer_fit)$varcor[[1]], "stddev")),
as.numeric(exp(REs[c(1,3)])), tolerance = 1.0e-4)
expect_equal(as.numeric(attr(summary(lmer_fit)$varcor[[1]], "correlation")[1,2]),
as.numeric(REs[2]), tolerance = 1.0e-2)
# Check that ranef() returns the same thing
expect_equal(mean(diag(cor(ranef(sdmTMB_fit)[[1]]$Subject, ranef(lmer_fit)$Subject))), 1)
# verify model with no random int works
sdmTMB_fit <- sdmTMB(Reaction ~ Days + (-1 + Days | Subject), sleepstudy, spatial="off")
lmer_fit <- lme4::lmer(Reaction ~ Days + (-1 + Days | Subject), sleepstudy, REML = FALSE)
expect_equal(fixef(lmer_fit)[1], coef(sdmTMB_fit)[1])
expect_equal(fixef(lmer_fit)[2], coef(sdmTMB_fit)[2])
REs <- sdmTMB_fit$sd_report$value[grep("cov_pars", names(sdmTMB_fit$sd_report$value))]
expect_equal(as.numeric(attr(summary(lmer_fit)$varcor[[1]], "stddev"))[1],
as.numeric(exp(REs[c(1)])), tolerance = 1.0e-4)
# add a new level and verify multiple groups works
data("sleepstudy", package="lme4")
sleepstudy$age <- as.factor(rep(letters[1:5],36))
set.seed(1)
devs <- rnorm(5,0,1)
sleepstudy$Reaction <- sleepstudy$Reaction + devs[rep(1:5,36)] + rnorm(nrow(sleepstudy),0,0.03)
sdmTMB_fit <- sdmTMB(Reaction ~ Days + (1 + Days | Subject) + (1 | age), sleepstudy, spatial="off")
# glmmtmb_fit <- glmmTMB::glmmTMB(Reaction ~ Days + (Days | Subject) + (1|age), sleepstudy, REML = FALSE)
x <- capture.output(sdmTMB_fit)
expect_true(any(grepl("Corr", x)))
expect_true(any(grepl("Std.Dev.", x)))
expect_true(any(grepl("Variance", x)))
expect_true(any(grepl("565.71", x)))
expect_true(any(grepl("0.08", x)))
# library(sdmTMB)
# data("sleepstudy", package="lme4")
# sleepstudy$age <- as.factor(rep(letters[1:5],36))
# set.seed(1)
# devs <- rnorm(5,0,1)
# sleepstudy$Reaction <- sleepstudy$Reaction + devs[rep(1:5,36)] + rnorm(nrow(sleepstudy),0,0.03)
#
# # random slopes and intercepts by subject
# sdmTMB_fit <- sdmTMB(Reaction ~ Days + (Days | Subject) + (1 | age), sleepstudy, spatial="off")
# sdmTMB_fit
#
# # random intercepts only by subject
# sdmTMB_fit <- sdmTMB(Reaction ~ Days + (1 | Subject) + (1 | age), sleepstudy, spatial="off")
# sdmTMB_fit
#
# # random slopes only by subject
# sdmTMB_fit <- sdmTMB(Reaction ~ Days + (0 + Days | Subject) + (1 | age), sleepstudy, spatial="off")
# sdmTMB_fit
# sdmTMB_fit <- sdmTMB(Reaction ~ Days + (1 | Subject) + (1 | age), sleepstudy, spatial="off")
# glmmtmb_fit <- glmmTMB::glmmTMB(Reaction ~ Days + (1 | Subject) + (1 | age), sleepstudy)
# summary(glmmtmb_fit)
# sdmTMB_fit
sdmTMB_fit <- sdmTMB(Reaction ~ Days + (1 + Days | Subject) + (1 | age), sleepstudy, spatial="off")
expect_equal(glmmTMB::fixef(glmmTMB_fit)$cond[1], coef(sdmTMB_fit)[1], tolerance = 1e-2)
expect_equal(glmmTMB::fixef(glmmTMB_fit)$cond[2], coef(sdmTMB_fit)[2], tolerance = 1e-2)
REs <- sdmTMB_fit$sd_report$value[grep("cov_pars", names(sdmTMB_fit$sd_report$value))]
expect_equal(as.numeric(attr(summary(glmmTMB_fit)$varcor$cond$Subject, 'stddev')),
as.numeric(exp(REs[c(1,3)])), tolerance = 1.0e-3)
# Add in spatial field
set.seed(1)
x <- stats::runif(500, -1, 1)
y <- stats::runif(500, -1, 1)
loc <- data.frame(x = x, y = y)
spde <- make_mesh(loc, c("x", "y"), n_knots = 50, type = "kmeans")
s <- sdmTMB_simulate(
~1,
data = loc,
mesh = spde,
range = 1.4,
phi = 0.1,
sigma_O = 0.2,
seed = 1,
B = 0
)
g <- rep(gl(30, 10), 999)
set.seed(134)
RE_vals <- rnorm(30, 0, 0.4)
h <- rep(gl(40, 10), 999)
set.seed(1283)
RE_vals2 <- rnorm(40, 0, 0.2)
s$g <- g[seq_len(nrow(s))]
s$h <- h[seq_len(nrow(s))]
s$observed <- s$observed + RE_vals[s$g] + RE_vals2[s$h]
# ignore RE:
m1 <- sdmTMB(data = s, formula = observed ~ 1, mesh = spde)
#tidy(m1, "fixed", conf.int = TRUE)
.t1 <- tidy(m1, "ran_pars", conf.int = TRUE)
# with RE:
m <- sdmTMB(
data = s, time = NULL,
formula = observed ~ 1 + (1 | g) + (1 | h), mesh = spde
)
#tidy(m, "fixed", conf.int = TRUE)
.t <- tidy(m, "ran_pars", conf.int = TRUE)
#print(m)
expect_gt(.t1$estimate[.t1$term == "phi"], .t$estimate[.t$term == "phi"])
expect_gt(.t1$estimate[.t1$term == "sigma_O"], .t$estimate[.t$term == "sigma_O"])
expect_equal(nrow(.t1), nrow(.t))
b <- as.list(m$sd_report, "Estimate")
.cor <- cor(c(RE_vals, RE_vals2), b$re_b_pars)
expect_equal(round(c(.cor), 5), 0.8313)
expect_equal(round(b$re_b_pars[seq_len(5)], 5),
c(-0.28645, 0.68619, 0.10028, -0.31436, -0.61168),
tolerance = 1e-5
)
#
# p <- predict(m)
# p.nd <- predict(m, newdata = s)
# # newdata is not the same as fitted data:
# p.nd2 <- predict(m, newdata = s[1:3, , drop = FALSE])
# expect_equal(p.nd2$est[1:3], p$est[1:3], tolerance = 1e-4)
# expect_equal(p.nd2$est_non_rf[1:3], p$est_non_rf[1:3], tolerance = 1e-4)
# expect_equal(p.nd2$est[1:3], p.nd$est[1:3], tolerance = 1e-9)
# expect_equal(p$est, p.nd$est, tolerance = 1e-4)
# expect_equal(p$est_rf, p.nd$est_rf, tolerance = 1e-4)
# expect_equal(p$est_non_rf, p.nd$est_non_rf, tolerance = 1e-4)
#
# # prediction with missing level in `newdata` works:
# s_drop <- s[s$g != 1, , drop = FALSE]
# p.nd <- predict(m, newdata = s_drop)
# p <- p[s$g != 1, , drop = FALSE]
# expect_equal(p$est, p.nd$est, tolerance = 1e-4)
#
# # prediction without random intercepts included:
# p.nd.null <- predict(m, newdata = s, re_form_iid = NULL)
# p.nd.na <- predict(m, newdata = s, re_form_iid = NA)
# p.nd.0 <- predict(m, newdata = s, re_form_iid = ~0)
# expect_identical(p.nd.na, p.nd.0)
# expect_false(identical(p.nd.null$est, p.nd.0$est))
#
# random ints match glmmTMB exactly:
m <- sdmTMB(
data = s,
formula = observed ~ 1 + (1 | g) + (1 | h), mesh = spde, spatial = "off"
)
.t <- tidy(m, "ran_pars")
m.glmmTMB <- glmmTMB::glmmTMB(
data = s,
formula = observed ~ 1 + (1 | g) + (1 | h)
)
# .v <- glmmTMB::VarCorr(m.glmmTMB)
# expect_equal(.t$estimate[.t$term == "sigma_G"][1],
# sqrt(as.numeric(.v$cond$g)),
# tolerance = 1e-5
# )
# expect_equal(.t$estimate[.t$term == "sigma_G"][2],
# sqrt(as.numeric(.v$cond$h)),
# tolerance = 1e-5
# )
sdmTMB_re <- as.list(m$sd_report, "Estimate")
glmmTMB_re <- glmmTMB::ranef(m.glmmTMB)$cond
expect_equal(c(glmmTMB_re$g$`(Intercept)`, glmmTMB_re$h$`(Intercept)`),
sdmTMB_re$re_b_pars[,1],
tolerance = 1e-5
)
#
# predicting with new levels throws error for now:
m <- sdmTMB(data = s, formula = observed ~ 1 + (1 | g), spatial = "off")
nd <- data.frame(g = factor(c(1, 2, 3, 800)), observed=1)
expect_error(predict(m, newdata = nd), regexp = "Extra")
})
test_that("Random intercepts and cross validation play nicely", {
skip_on_cran()
set.seed(1)
x <- stats::runif(500, -1, 1)
y <- stats::runif(500, -1, 1)
loc <- data.frame(x = x, y = y)
spde <- make_mesh(loc, c("x", "y"), n_knots = 50, type = "kmeans")
s <- sdmTMB_simulate(
~1,
data = loc,
mesh = spde,
range = 1.4,
phi = 0.1,
sigma_O = 0,
seed = 1,
B = 0
)
g <- rep(gl(3, 10), 999)
RE_vals <- rnorm(3, 0, 0.4)
s$g <- g[seq_len(nrow(s))]
s$observed <- s$observed + RE_vals[s$g]
# one level in its own fold:
fold_ids <- as.integer(s$g %in% c(1, 2)) + 1
out <- sdmTMB_cv(
observed ~ 1 + (1 | g),
fold_ids = fold_ids, k_folds = 2L, spatial = "off", data = s, mesh = spde,
parallel = FALSE
)
expect_equal(round(out$sum_loglik, 3), -51.36)
# Because the function fits with all the data but sets the missing fold to
# have likelihood weights of 0, the fitted model is aware of all levels and
# the missing levels just get left at a value of 0 because the data never
# inform the model, which is exactly what you want.
})
test_that("Tidy returns random intercepts appropriately.", {
skip_on_cran()
skip_if_not_installed("glmmTMB")
set.seed(1)
x <- stats::runif(500, -1, 1)
y <- stats::runif(500, -1, 1)
loc <- data.frame(x = x, y = y)
spde <- make_mesh(loc, c("x", "y"), n_knots = 50, type = "kmeans")
s <- sdmTMB_simulate(
~1,
data = loc,
mesh = spde,
range = 1.4,
phi = 0.1,
sigma_O = 0.2,
seed = 1,
B = 0
)
g <- rep(gl(30, 10), 999)
set.seed(134)
RE_vals <- rnorm(30, 0, 0.4)
h <- rep(gl(40, 10), 999)
set.seed(1283)
RE_vals2 <- rnorm(40, 0, 0.2)
s$g <- g[seq_len(nrow(s))]
s$h <- h[seq_len(nrow(s))]
s$observed <- s$observed + RE_vals[s$g] + RE_vals2[s$h]
# with RE; check against glmmTMB
m <- sdmTMB(
data = s, time = NULL,
formula = observed ~ 1 + (1 | g) + (1 | h),
mesh = spde,
spatial = "off"
)
m2 <- glmmTMB::glmmTMB(
data = s,
formula = observed ~ 1 + (1 | g) + (1 | h)
)
# ranpars <- tidy(m, "ran_pars", conf.int = TRUE)
# s2 <- as.list(m2$sdr, "Estimate")
# expect_equal(ranpars$estimate[-1], exp(s2$theta), tolerance = 0.001)
# s2se <- as.list(m2$sdr, "Std. Error")
# upr <- exp(s2$theta + 2 * s2se$theta)
# lwr <- exp(s2$theta - 2 * s2se$theta)
# expect_equal(ranpars$conf.low[-1], lwr, tolerance = 0.01)
# expect_equal(ranpars$conf.high[-1], upr, tolerance = 0.01)
ranint <- tidy(m, "ran_vals", conf.int = TRUE)
expect_equal(ranef(m2)$cond$g[[1]],
ranint$estimate[1:30],
tolerance = 0.01
)
#
# # also check that ranef returns the same thing with same names
# expect_equal(names(ranef(m2)$cond), names(ranef(m)$cond))
#
# # and check that they return the same values
# expect_equal(ranef(m2)$cond$g[[1]], ranef(m)$cond$g[[1]], tolerance = 1e-5)
})
#
#
test_that("Random intercept classes in predict() are checked appropriately", {
skip_on_cran()
set.seed(1)
pcod$year_f <- as.factor(pcod$year)
pcod_yrf_as_num <- pcod_yrf_as_chr <- pcod
pcod_yrf_as_num$year_f <- as.numeric(pcod$year)
pcod_yrf_as_chr$year_f <- as.character(pcod$year)
m_yrf_re <- sdmTMB(
data = pcod,
formula = density ~ poly(log(depth), 2) + (1 | year_f),
family = tweedie(link = "log"),
spatial = "off"
)
expect_error(
p8 <- predict(m_yrf_re, newdata = pcod_yrf_as_num),
regexp = "newdata"
)
expect_error(
p9 <- predict(m_yrf_re, newdata = pcod_yrf_as_chr),
regexp = "newdata"
)
expect_error(
p10 <- predict(m_yrf_re, newdata = pcod_yrf_as_num, re_form = NA),
regexp = "newdata"
)
p11 <- predict(m_yrf_re, newdata = pcod_yrf_as_num, # This should work
re_form = NA, re_form_iid = NA)
expect_s3_class(p11, "tbl_df")
})
test_that("Delta model works with random effects", {
skip_on_cran()
set.seed(1)
data(pcod)
pcod$year_f <- as.factor(pcod$year)
# with single formula, the random effects should get carried through to all pieces
m_yrf_re <- sdmTMB(
data = pcod,
formula = density ~ (1 | year_f),
family = delta_gamma(),
spatial = "off"
)
expect_equal(nrow(tidy(m_yrf_re, "ran_vals")), length(unique(pcod$year))*2)
# test 2 different RE intercepts
m_yrf_re_1 <- sdmTMB(
data = pcod,
formula = list(density ~ (1 | year_f), density ~ (1|year_f)),
family = delta_gamma(),
spatial = "off"
)
# 2 diff intercepts, same number of levels
intcpts <- rnorm(9)
pcod$vessel <- sample(1:9, size = nrow(pcod), replace=T)
pcod$density[which(pcod$present==1)] <- exp(log(pcod$density[which(pcod$present==1)]) + intcpts[pcod$vessel[which(pcod$present==1)]])
pcod$vessel <- as.factor(pcod$vessel)
pcod$density[which(pcod$present==1)] <- exp(log(pcod$density[which(pcod$present==1)]) + intcpts[pcod$vessel[which(pcod$present==1)]])
m_yrf_re2 <- sdmTMB(
data = pcod,
formula = list(density ~ (1 | year_f), density ~ (1|vessel)),
family = delta_gamma(),
spatial = "off"
)
glmm_pres <- glmmTMB::glmmTMB(
data = pcod,
formula = present ~ (1 | year),
family = binomial()
)
log_vars <- m_yrf_re2$sd_report$value[grep("re_cov_pars", names(m_yrf_re2$sd_report$value))]
expect_equal(as.numeric(attr(summary(glmm_pres)$varcor[[1]]$year, "stddev")), as.numeric(exp(log_vars[1])),
tolerance = 1e-5)
# 2 diff intercepts, different number of levels
intcpts <- rnorm(10)
pcod$vessel <- sample(1:10, size = nrow(pcod), replace=T)
pcod$density[which(pcod$present==1)] <- exp(log(pcod$density[which(pcod$present==1)]) + intcpts[pcod$vessel[which(pcod$present==1)]])
pcod$vessel <- as.factor(pcod$vessel)
pcod$density[which(pcod$present==1)] <- exp(log(pcod$density[which(pcod$present==1)]) + intcpts[pcod$vessel[which(pcod$present==1)]])
m_yrf_re3 <- sdmTMB(
data = pcod,
formula = list(density ~ (-1+depth | year_f), density ~ (1|vessel)),
family = delta_gamma(),
spatial = "off"
)
# test 2 different numbers of random ints
m_yrf_re4 <- sdmTMB(
data = pcod,
formula = list(density ~ (1 | year_f) + (1|vessel), density ~ (1|vessel)),
family = delta_gamma(),
spatial = "off"
)
# test 2 different numbers of random ints, different number of levels
# m_yrf_re5 <- sdmTMB(
# data = pcod,
# formula = list(density ~ (depth | year_f) + (1|vessel), density ~ (1|vessel)),
# family = delta_gamma(),
# spatial = "off"
# )
# # Test same model with characters
# pcod$year_chr <- paste(pcod$year)
# m_yrf_re6 <- sdmTMB(
# data = pcod,
# formula = list(density ~ (depth | year_chr) + (1|vessel), density ~ (1|vessel)),
# family = delta_gamma(),
# spatial = "off"
# )
#
#
# # Test same model with integers
# m_yrf_re7 <- sdmTMB(
# data = pcod,
# formula = list(density ~ (depth | year) + (1|vessel), density ~ (1|vessel)),
# family = delta_gamma(),
# spatial = "off"
# )
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.