plot_phylum_relativeAbundances_barplot <- function( )
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
dataSetInf6m <- dataSetInf6m[,names(dataSetInf6m) %in% c("X.SampleID","dyad_id","milkConsumptionType")]
taxaTable <- phylumTaxa
taxaTable <- as.data.frame(taxaTable)
taxaTable$taxa <- gsub("\\| ",".",taxaTable$taxa)
row.names(taxaTable) <- taxaTable$taxa
taxaTable_6m<- taxaTable[,grepl("Inf.6m",colnames(taxaTable))]
myT <- t(taxaTable_6m)
myT <- myT[order(row.names(myT)),]
otherMicrobes <- as.data.frame(rowSums(myT[,!colnames(myT) %in% c("k__Bacteria.p__Actinobacteria","k__Bacteria.p__Bacteroidetes","k__Bacteria.p__Firmicutes","k__Bacteria.p__Proteobacteria","k__Bacteria.p__Verrucomicrobia")]))
names(otherMicrobes)[1] <- "Others"
myT <- myT[,colnames(myT) %in% c("k__Bacteria.p__Actinobacteria","k__Bacteria.p__Bacteroidetes","k__Bacteria.p__Firmicutes","k__Bacteria.p__Proteobacteria","k__Bacteria.p__Verrucomicrobia")]
myT <- merge(myT,otherMicrobes,by="row.names")
row.names(myT) <- myT[,1]
myT <- myT[,-1]
myT <- myT[c("k__Bacteria.p__Actinobacteria","k__Bacteria.p__Bacteroidetes","k__Bacteria.p__Firmicutes","k__Bacteria.p__Proteobacteria","k__Bacteria.p__Verrucomicrobia","Others")]
colnames(myT)[1:5] <- substr(colnames(myT)[1:5],13,nchar(colnames(myT)[1:5]))
myT2 <- myT/rowSums(myT)
myT3 <- myT2[,(colSums(myT2==0)/nrow(myT2)) <= 0.99]
taxaMeta <- merge(dataSetInf6m,myT3,by.x="X.SampleID",by.y="row.names")
#taxaMeta2 <- taxaMeta[order(taxaMeta$frucLevel,taxaMeta$CAGE),];
taxaMeta2 <- taxaMeta[order(taxaMeta$milkConsumptionType,taxaMeta$`p__Actinobacteria`,taxaMeta$`p__Bacteroidetes`,taxaMeta$`p__Firmicutes`),];
taxaMeta3 <- taxaMeta2[,!colnames(taxaMeta2) %in% c("X.SampleID", "dyad_id")]
phylum_colors <- c("#8ca63a",
"#9964cb",
"#5fa271",
"#c95a80",
"#798bc6",
"#c76f3e")
summaries <- taxaMeta3 %>%
group_by(milkConsumptionType) %>%
summarize_if(is.numeric, mean)
summariesnames <- summaries$milkConsumptionType
summaries <- summaries[,-1]
summaries <- as.matrix(summaries)
row.names(summaries) <- summariesnames
dat <- melt(summaries,id.vars="milkConsumptionType")
names(dat)[names(dat) %in% "Var1"] <- "milkConsumptionType"
p <- ggplot(dat, aes(x=milkConsumptionType, y=value, fill = Var2))
print(p +geom_bar(position="stack", stat="identity",
colour="black",# Use black outlines,
size=.5) + # Thinner lines
scale_fill_manual(values=phylum_colors) +
#guides(fill=FALSE)+
ggtitle("Phylum-level")+
ylab("Percentage") + xlab("Milk ConsumptionType") +
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=16),
text=element_text(face="bold",size=20),
legend.position="left",
legend.title=element_blank()
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
plot_family_relativeAbundances_barplot <- function( )
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
dataSetInf6m <- dataSetInf6m[,names(dataSetInf6m) %in% c("X.SampleID","dyad_id","milkConsumptionType")]
taxaTable <- familyTaxa
taxaTable <- as.data.frame(taxaTable)
taxaTable$taxa <- gsub("\\| ",".",taxaTable$taxa)
row.names(taxaTable) <- taxaTable$taxa
taxaTable_6m<- taxaTable[,grepl("Inf.6m",colnames(taxaTable))]
myT <- t(taxaTable_6m)
myT <- myT[order(row.names(myT)),]
mainMicrobes <- names(colSums(myT)[colSums(myT)>30000])
microbeName <- character(0)
for(i in 1:length(mainMicrobes))
microbeName[[length(microbeName)+1]] <- str_split(mainMicrobes,"__")[[i]][6]
otherMicrobes <- as.data.frame(rowSums(myT[,!colnames(myT) %in% c(mainMicrobes)]))
names(otherMicrobes)[1] <- "Others"
myT <- myT[,colnames(myT) %in% c(mainMicrobes)]
myT <- merge(myT,otherMicrobes,by="row.names")
row.names(myT) <- myT[,1]
myT <- myT[,-1]
myT <- myT[c(mainMicrobes,"Others")]
colnames(myT)[1:length(mainMicrobes)] <- microbeName
myT2 <- myT/rowSums(myT)
myT3 <- myT2[,(colSums(myT2==0)/nrow(myT2)) <= 0.99]
taxaMeta <- merge(dataSetInf6m,myT3,by.x="X.SampleID",by.y="row.names")
#taxaMeta2 <- taxaMeta[order(taxaMeta$frucLevel,taxaMeta$CAGE),];
taxaMeta2 <- taxaMeta[order(taxaMeta$milkConsumptionType,taxaMeta$`Bacteroidaceae`,taxaMeta$`Enterobacteriaceae`,taxaMeta$`Bifidobacteriaceae`,taxaMeta$`Lachnospiraceae`),];
taxaMeta3 <- taxaMeta2[,!colnames(taxaMeta2) %in% c("X.SampleID", "dyad_id")]
family_colors <- c("#aa60da",
"#70b836",
"#da45af",
"#57bf78",
"#db5680",
"#39c2ca",
"#d95d48",
"#6780d9",
"#aaa13c",
"#c07dc2",
"#5f924c",
"#d0883f")
summaries <- taxaMeta3 %>%
group_by(milkConsumptionType) %>%
summarize_if(is.numeric, mean)
summariesnames <- summaries$milkConsumptionType
summaries <- summaries[,-1]
summaries <- as.matrix(summaries)
row.names(summaries) <- summariesnames
dat <- melt(summaries,id.vars="milkConsumptionType")
names(dat)[names(dat) %in% "Var1"] <- "milkConsumptionType"
p <- ggplot(dat, aes(x=milkConsumptionType, y=value, fill = Var2))
print(p +geom_bar(position="stack", stat="identity",
colour="black",# Use black outlines,
size=.5) + # Thinner lines
scale_fill_manual(values=family_colors) +
ggtitle("Family-level")+
ylab("Percentage") + xlab("Milk ConsumptionType") +
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=16),
text=element_text(face="bold",size=20),
legend.position="left",
legend.title=element_blank()
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
plot_taxa_milkType_association <- function(taxaData = phylumTaxa,variable = "k__Bacteria.p__Actinobacteria",variableName = "Logged Abundance of Actinobacteria")
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
taxaTable <- taxaData
taxaTable <- as.data.frame(taxaTable)
taxaTable$taxa <- gsub("\\| ",".",taxaTable$taxa)
row.names(taxaTable) <- taxaTable$taxa
taxaTable_6m<- taxaTable[,grepl("Inf.6m",colnames(taxaTable))]
myT <- t(taxaTable_6m)
myT2 <- (myT/(rowSums(myT)+1))*(sum(rowSums(myT))/nrow(myT))
myTLogged <- log10((myT2 +1))
myTLogged_6m<- myTLogged[,(colSums(myTLogged==0)/nrow(myTLogged)) <= 0.9]
taxaTable_1m <- taxaTable[,grepl("Inf.Bl",colnames(taxaTable))]
myT_1m <- t(taxaTable_1m)
myT2_1m <- ( myT_1m/(rowSums(myT_1m)+1))*(sum(rowSums(myT_1m))/nrow(myT_1m))
myTLogged_1m <- log10((myT2_1m +1))
taxaMeta_6m <- merge(dataSetInf6m,myTLogged_6m,by.x="X.SampleID",by.y="row.names")
taxaMeta_1m <- merge(dataSetInf1m,myTLogged_1m,by.x="X.SampleID",by.y="row.names")
modelForm=as.formula(paste("thisIndex","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisIndex_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
thisIndex=as.numeric(as.character(taxaMeta_6m[,names(taxaMeta_6m) %in% variable])),
milkConsumptionType=taxaMeta_6m$milkConsumptionType,
mother_age=taxaMeta_6m$mother_age,
prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=taxaMeta_6m$mode_of_delivery,
mom_BMI=taxaMeta_6m$mom_current_BMI,
sex=taxaMeta_6m$sex,
baby_age=taxaMeta_6m$baby_age,
inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
thisIndex_1m=taxaMeta_1m[,colnames(taxaMeta_1m) %in% variable]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
p <- ggplot(thisDataInstance_1m6m,aes(x=factor(milkConsumptionType),y=thisIndex))
print(p + geom_boxplot(outlier.size=-1) +
geom_jitter(colour="grey46",size=5, position=position_jitter(0.2),aes(shape=milkConsumptionType)) +
guides(shape=FALSE)+
ggtitle("")+
geom_signif(comparisons=list(c("TF","BF")),
annotations=ifelse(tukey$milkConsumptionType[1,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[1,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[1,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[1,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisIndex)+0.1, tip_length = 0.1, vjust=0.3) +
geom_signif(comparisons=list(c("ASF","BF")),
annotations=ifelse(tukey$milkConsumptionType[2,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[2,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[2,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[2,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisIndex)+0.6, tip_length = 0.1, vjust=0.3) +
xlab("Milk Consumption Type") +
ylab(variableName)+
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=20),
text=element_text(face="bold",size=16),
legend.position="bottom",
legend.title=element_blank(),
plot.title = element_text(hjust = 0.5)
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
plot_alphaDiversity_milkType_association <- function(variable = "shannonDiversity",variableName = "Shannon Diversity")
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
taxaTable_6m<- alphaDiversityTable[grepl("Inf.6m",rownames(alphaDiversityTable)),]
taxaTable_1m <- alphaDiversityTable[grepl("Inf.Bl",rownames(alphaDiversityTable)),]
taxaMeta_6m <- merge(dataSetInf6m,taxaTable_6m,by.x="X.SampleID",by.y="row.names")
taxaMeta_1m <- merge(dataSetInf1m,taxaTable_1m,by.x="X.SampleID",by.y="row.names")
modelForm=as.formula(paste("thisIndex","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisIndex_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
thisIndex=as.numeric(as.character(taxaMeta_6m[,names(taxaMeta_6m) %in% variable])),
milkConsumptionType=taxaMeta_6m$milkConsumptionType,
mother_age=taxaMeta_6m$mother_age,
prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=taxaMeta_6m$mode_of_delivery,
mom_BMI=taxaMeta_6m$mom_current_BMI,
sex=taxaMeta_6m$sex,
baby_age=taxaMeta_6m$baby_age,
inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
thisIndex_1m=taxaMeta_1m[,colnames(taxaMeta_1m) %in% variable]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
p <- ggplot(thisDataInstance_1m6m,aes(x=factor(milkConsumptionType),y=thisIndex))
print(p + geom_boxplot(outlier.size=-1) +
geom_jitter(colour="grey46",size=5, position=position_jitter(0.2),aes(shape=milkConsumptionType)) +
guides(shape=FALSE)+
ggtitle("")+
geom_signif(comparisons=list(c("TF","BF")),
annotations=ifelse(tukey$milkConsumptionType[1,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[1,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[1,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[1,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisIndex)+0.1, tip_length = 0.1, vjust=0.3) +
geom_signif(comparisons=list(c("ASF","BF")),
annotations=ifelse(tukey$milkConsumptionType[2,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[2,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[2,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[2,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisIndex)+0.6, tip_length = 0.1, vjust=0.3) +
xlab("Milk Consumption Type") +
ylab(variableName)+
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=20),
text=element_text(face="bold",size=16),
legend.position="bottom",
legend.title=element_blank(),
plot.title = element_text(hjust = 0.5)
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
plot_betaDiversity_milkType_association <- function(axis = 1)
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
loadings6m <- eigen6m
taxaMeta_1m <- merge(dataSetInf1m,ordinationData1m,by.x="X.SampleID",by.y="row.names")
taxaMeta_6m <- merge(dataSetInf6m,ordinationData6m,by.x="X.SampleID",by.y="row.names")
modelForm=as.formula(paste("thisIndex","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisIndex_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
thisIndex=taxaMeta_6m[,names(taxaMeta_6m) %in% paste("Axis",axis,sep = "")],
milkConsumptionType=taxaMeta_6m$milkConsumptionType,
mother_age=taxaMeta_6m$mother_age,
prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=taxaMeta_6m$mode_of_delivery,
mom_BMI=taxaMeta_6m$mom_current_BMI,
sex=taxaMeta_6m$sex,
baby_age=taxaMeta_6m$baby_age,
inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
thisIndex_1m=taxaMeta_1m[,colnames(taxaMeta_1m) %in% paste("Axis",axis,sep = "")]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
p <- ggplot(thisDataInstance_1m6m,aes(x=factor(milkConsumptionType),y=thisIndex))
print(p + geom_boxplot(outlier.size=-1) +
geom_jitter(colour="grey46",size=5, position=position_jitter(0.2),aes(shape=milkConsumptionType)) +
guides(shape=FALSE)+
ggtitle("")+
geom_signif(comparisons=list(c("TF","BF")),
annotations=ifelse(tukey$milkConsumptionType[1,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[1,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[1,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[1,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisIndex)+0.1, tip_length = 0.1, vjust=0.3) +
geom_signif(comparisons=list(c("ASF","BF")),
annotations=ifelse(tukey$milkConsumptionType[2,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[2,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[2,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[2,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisIndex)+0.6, tip_length = 0.1, vjust=0.3) +
xlab("Milk Consumption Type") +
ylab(paste("Axis",axis," ",(round(loadings6m$ProportionExplained[axis],2))*100,"%",sep=""))+
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=20),
text=element_text(face="bold",size=16),
legend.position="bottom",
legend.title=element_blank(),
plot.title = element_text(hjust = 0.5)
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
# plot_deicode_pca_plots <- function(dataFile="data/metaData.RData", betaDiversityFile_1m = "data/betaDiversity_1m.RData",betaDiversityFile_6m = "data/betaDiversity_6m.RData",loadings = "data/loadings_6m.RData",axis = 1)
# {
# load(dataFile)
# dataSet <-thisDataInstance_all
# dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
# dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
#
# load(betaDiversityFile_6m)
# load(betaDiversityFile_1m)
# load(loadings);
# loadings6m <- eigen6m
#
# taxaMeta_1m <- merge(dataSetInf1m,ordinationData1m,by.x="X.SampleID",by.y="row.names")
# taxaMeta_6m <- merge(dataSetInf6m,ordinationData6m,by.x="X.SampleID",by.y="row.names")
#
# modelForm1=as.formula(paste("Axis1","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+Axis1_1m" ));
# modelForm2=as.formula(paste("Axis2","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+Axis2_1m" ));
#
# thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
# Axis1=taxaMeta_6m$Axis1,
# Axis2=taxaMeta_6m$Axis2,
# milkConsumptionType=taxaMeta_6m$milkConsumptionType,
# mother_age=taxaMeta_6m$mother_age,
# prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
# mode_of_delivery=taxaMeta_6m$mode_of_delivery,
# mom_BMI=taxaMeta_6m$mom_current_BMI,
# sex=taxaMeta_6m$sex,
# baby_age=taxaMeta_6m$baby_age,
# inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
# fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
#
# thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
# Axis1_1m=taxaMeta_1m$Axis1,
# Axis2_1m=taxaMeta_1m$Axis2))
# thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
#
# reducedModMDS1_6m <- lm(Axis1~mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+Axis1_1m,data=thisDataInstance_1m6m);
# fullModMDS1_6m <- lm(Axis1~factor(milkConsumptionType)+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+Axis1_1m,data=thisDataInstance_1m6m);
# pVal1 <- as.numeric(format(anova(reducedModMDS1_1m,fullModMDS1_1m)$`Pr(>F)`[2],digits=3));
#
# reducedModMDS2_6m <- lm(Axis2~mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+Axis2_1m,data=thisDataInstance_1m6m);
# fullModMDS2_6m <- lm(Axis2~factor(milkConsumptionType)+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+Axis2_1m,data=thisDataInstance_1m6m);
# pVal2 <- as.numeric(format(anova(reducedModMDS2_1m,fullModMDS2_1m)$`Pr(>F)`[2],digits=3));
#
# comp1<-as.character(paste("Axis1"," ",(round(loadings6m$ProportionExplained[1],2))*100,"%, p-val = ",format.pval(pVal1,2),sep=""));
# comp2<-as.character(paste("Axis2"," ",(round(loadings6m$ProportionExplained[2],2))*100,"%, p-val = ",format.pval(pVal2,2),sep=""));
#
# thisDataInstance <- na.omit(data.frame(Axis1=ordinationMeta1m$Axis1,Axis2=ordinationMeta1m$Axis2,milkConsumptionType=ordinationMeta1m$milkConsumptionType))
# p <- ggplot(thisDataInstance_1m6m)
# print(p + geom_point(aes(Axis1,Axis2,colour = milkConsumptionType,shape=milkConsumptionType),size = 10) +
# #scale_color_manual(values=c("#999999", "#E69F00", "darkorchid1"))+
# scale_color_manual(values=c("black", "grey46", "grey76"))+
# #guides(colour=FALSE)+
# #guides(shape=FALSE)+
# xlab(comp1) + ylab(comp2) +
# theme_classic(base_size = 30)+
# theme(text=element_text(face="bold",size=20),
# axis.line=element_line(size=1),
# axis.ticks=element_line(size=1),
# axis.text=element_text(face="bold",size=16),
# axis.title=element_text(face="bold",size=30),
# plot.margin=unit(c(9.0, 5.5, 6.5, 5.5), "points"),
# legend.position = "bottom"
# )+
# theme(axis.line.x = element_line(color="black", size = 2),
# axis.line.y = element_line(color="black", size = 2),
# legend.title = element_blank(),
# legend.text=element_text(size=20)
# )
# )
# }
plot_keggModule_milkType_association <- function(variable = "M00221", variableName = "M00221: Putative simple sugar transport system")
{
dataSet <- thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
moduleTable <- humann_modulec_picrust
moduleTable <- moduleTable[-c(1,2),]
colnames(moduleTable) <- substr(colnames(moduleTable),1,nchar(colnames(moduleTable))-10)
moduleTableBaby <- moduleTable[,grepl("Inf.6m",colnames(moduleTable))]
myT <- t(moduleTableBaby)
myTLogged_6m <- log10((myT/(rowSums(myT)+1))*(sum(rowSums(myT))/nrow(myT)) +1)
myTLogged_6m <- myTLogged_6m[,(colSums(myTLogged_6m==0)/nrow(myTLogged_6m)) <= 0.9]
moduleTableBaby_1m <- moduleTable[,grepl("Inf.Bl",colnames(moduleTable))]
myT_1m <- t(moduleTableBaby_1m)
myTLogged_1m<- log10((myT_1m/(rowSums(myT_1m)+1))*(sum(rowSums(myT_1m))/nrow(myT_1m)) +1)
moduleMeta_6m <- merge(dataSetInf6m,myTLogged_6m,by.x="X.SampleID",by.y="row.names")
moduleMeta_1m <- merge(dataSetInf1m,myTLogged_1m,by.x="X.SampleID",by.y="row.names")
modelForm=as.formula(paste("thisModule","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisModule_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=moduleMeta_6m$dyad_id,
thisModule=as.numeric(as.character(moduleMeta_6m[,names(moduleMeta_6m) %in% variable])),
milkConsumptionType=moduleMeta_6m$milkConsumptionType,
mother_age=moduleMeta_6m$mother_age,
prepreg_bmi_kgm2=moduleMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=moduleMeta_6m$mode_of_delivery,
mom_BMI=moduleMeta_6m$mom_current_BMI,
sex=moduleMeta_6m$sex,
baby_age=moduleMeta_6m$baby_age,
inf_weight_kg=moduleMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=moduleMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=moduleMeta_1m$dyad_id,
thisModule_1m=moduleMeta_1m[,colnames(moduleMeta_1m) %in% variable]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
p <- ggplot(thisDataInstance_1m6m,aes(x=factor(milkConsumptionType),y=thisModule))
print(p + geom_boxplot(outlier.size=-1) +
geom_jitter(colour="grey46",size=5, position=position_jitter(0.2),aes(shape=milkConsumptionType)) +
guides(shape=FALSE)+
ggtitle("")+
geom_signif(comparisons=list(c("TF","BF")),
annotations=ifelse(tukey$milkConsumptionType[1,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[1,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[1,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[1,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisModule)+0.1, tip_length = 0.1, vjust=0.3) +
geom_signif(comparisons=list(c("ASF","BF")),
annotations=ifelse(tukey$milkConsumptionType[2,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[2,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[2,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[2,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance_1m6m$thisModule)+0.6, tip_length = 0.1, vjust=0.3) +
xlab("Milk Consumption Type") +
ylab(variableName)+
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=20),
text=element_text(face="bold",size=16),
legend.position="bottom",
legend.title=element_blank(),
plot.title = element_text(hjust = 0.5)
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
plot_bayley_milkType_association <- function(variable = "bsid_cog_ss",variableName = "Cognitive Scaled Score")
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
thisDataInstance <- na.omit(data.frame(dyad_id=dataSetInf6m$dyad_id,
thisMeasure=as.numeric(as.character(dataSetInf6m[,names(dataSetInf6m) %in% variable])),
milkConsumptionType=dataSetInf6m$milkConsumptionType,
prepreg_bmi_kgm2=dataSetInf6m$prepreg_bmi_kgm2,
sex=factor(dataSetInf6m$sex),
fruit_incj_Inf=dataSetInf6m$fruit_incj_Inf_24,
inf_weight_kg=dataSetInf6m$inf_weight_kg))
modelForm=as.formula(paste("thisMeasure","~milkConsumptionType+prepreg_bmi_kgm2 +sex+inf_weight_kg+fruit_incj_Inf"));
modelInfo <- lm(modelForm, data = thisDataInstance)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
p <- ggplot(thisDataInstance,aes(x=factor(milkConsumptionType),y=thisMeasure))
print(p + geom_boxplot(outlier.size=-1) +
geom_jitter(colour="grey46",size=5, position=position_jitter(0.2),aes(shape=milkConsumptionType)) +
guides(shape=FALSE)+
ggtitle("")+
geom_signif(comparisons=list(c("TF","BF")),
annotations=ifelse(tukey$milkConsumptionType[1,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[1,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[1,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[1,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance$thisMeasure)+0.1, tip_length = 0.1, vjust=0.3) +
geom_signif(comparisons=list(c("ASF","BF")),
annotations=ifelse(tukey$milkConsumptionType[2,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[2,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[2,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[2,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance$thisMeasure)+0.6, tip_length = 0.1, vjust=0.3) +
xlab("6m Milk Consumption Type") +
ylab(paste("24m",variableName))+
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=20),
text=element_text(face="bold",size=16),
legend.position="bottom",
legend.title=element_blank(),
plot.title = element_text(hjust = 0.5)
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
plot_somaticGrowth_milkType_association <- function(variable = "inf_weight_kg",variableName = "Infant Weight")
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
thisDataInstance <- na.omit(data.frame(dyad_id=dataSetInf6m$dyad_id,
thisMeasure=as.numeric(as.character(dataSetInf6m[,names(dataSetInf6m) %in% variable])),
milkConsumptionType=dataSetInf6m$milkConsumptionType,
prepreg_bmi_kgm2=dataSetInf6m$prepreg_bmi_kgm2,
sex=factor(dataSetInf6m$sex),
fruit_incj_Inf=dataSetInf6m$fruit_incj_Inf_24))
modelForm=as.formula(paste("thisMeasure","~milkConsumptionType+prepreg_bmi_kgm2 +sex+fruit_incj_Inf" ));
modelInfo <- lm(modelForm, data = thisDataInstance)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
p <- ggplot(thisDataInstance,aes(x=factor(milkConsumptionType),y=thisMeasure))
print(p + geom_boxplot(outlier.size=-1) +
geom_jitter(colour="grey46",size=5, position=position_jitter(0.2),aes(shape=milkConsumptionType)) +
guides(shape=FALSE)+
ggtitle("")+
geom_signif(comparisons=list(c("TF","BF")),
annotations=ifelse(tukey$milkConsumptionType[1,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[1,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[1,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[1,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance$thisMeasure)+0.1, tip_length = 0.1, vjust=0.3) +
geom_signif(comparisons=list(c("ASF","BF")),
annotations=ifelse(tukey$milkConsumptionType[2,4]<0.001,"****",
ifelse(tukey$milkConsumptionType[2,4]<0.01,"***",
ifelse(tukey$milkConsumptionType[2,4]<0.05,"**",
ifelse(tukey$milkConsumptionType[2,4]<0.1,"*","NS")))),
y_position = max(thisDataInstance$thisMeasure)+0.6, tip_length = 0.1, vjust=0.3) +
xlab("6m Milk Consumption Type") +
ylab(paste(variableName," at 24 m",sep=""))+
theme_classic(base_size = 20)+
theme(axis.line=element_line(size=1),
axis.ticks.y=element_line(size=1),
axis.ticks.x=element_blank(),
axis.text=element_text(face="bold",size=20),
text=element_text(face="bold",size=16),
legend.position="bottom",
legend.title=element_blank(),
plot.title = element_text(hjust = 0.5)
)+
theme(axis.line.x = element_line(color="black", size = 2),
axis.line.y = element_line(color="black", size = 2)
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.