library(DCFusion)
seed <- 1994
set.seed(seed)
nsamples <- 10000
fusion_time <- 1
mean <- 1.2
sd <- sqrt(0.1)
C <- 5
beta <- 1/C
diffusion_estimator <- 'NB'
input_samples <- lapply(1:C, function(i) rnorm_tempered(N = nsamples,
mean = mean,
sd = sd,
beta = beta))
##### Monte Carlo Fusion #####
input_particles_MCF <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = FALSE)
print('### performing standard fusion')
MCF_standard <- parallel_fusion_SMC_uniGaussian(particles_to_fuse = input_particles_MCF,
N = nsamples,
m = C,
time = fusion_time,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = rep(1, C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(MCF_standard$ESS)
print('CESS:'); print(MCF_standard$CESS)
print('### performing fusion with a preconditioning matrix')
MCF_generalised <- parallel_fusion_SMC_uniGaussian(particles_to_fuse = input_particles_MCF,
N = nsamples,
m = C,
time = fusion_time,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = sapply(input_samples, var),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(MCF_generalised$ESS)
print('CESS:'); print(MCF_generalised$CESS)
# plots
curve(dnorm(x, mean = 1.2, sd = sqrt(0.1)), -3, 5)
lines(density(resample_particle_y_samples(particle_set = MCF_generalised$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'red')
lines(density(resample_particle_y_samples(particle_set = MCF_standard$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'blue')
##### Bayesian Fusion (with n=1, so equal to Monte Carlo Fusion) #####
time_mesh_BF_n1 <- seq(0, fusion_time, 1)
input_particles_BF_n1 <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = FALSE,
number_of_steps = length(time_mesh_BF_n1))
print('### performing standard Bayesian Fusion (with n=1)')
BF_standard_n1 <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_n1,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n1,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = rep(1, C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_standard_n1$ESS)
print('CESS:'); print(BF_standard_n1$CESS)
print('### performing Bayesian Fusion (with n=1) with a preconditioning matrix')
BF_generalised_n1 <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_n1,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n1,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = sapply(input_samples, var),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_generalised_n1$ESS)
print('CESS:'); print(BF_generalised_n1$CESS)
# plots
curve(dnorm(x, mean = 1.2, sd = sqrt(0.1)), -3, 5)
lines(density(resample_particle_y_samples(particle_set = BF_standard_n1$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'red')
lines(density(resample_particle_y_samples(particle_set = BF_generalised_n1$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'blue')
##### Bayesian Fusion (with n=20) #####
time_mesh_BF_n20 <- seq(0, fusion_time, fusion_time/20)
input_particles_BF_n20 <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = FALSE,
number_of_steps = length(time_mesh_BF_n20))
print('### performing standard Bayesian Fusion (with n=20)')
BF_standard_n20 <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_n20,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n20,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = rep(1, C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_standard_n20$ESS)
print('CESS:'); print(BF_standard_n20$CESS)
print('### performing Bayesian Fusion (with n=20) with a preconditioning matrix')
BF_generalised_n20 <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_n20,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n20,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = sapply(input_samples, var),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_generalised_n20$ESS)
print('CESS:'); print(BF_generalised_n20$CESS)
# plots
# proposals
curve(dnorm(x, mean = 1.2, sd = sqrt(0.1)), -3, 5)
lines(density(BF_standard_n20$proposed_samples), col = 'red')
lines(density(BF_generalised_n20$proposed_samples), col = 'blue')
# resampled
curve(dnorm(x, mean = 1.2, sd = sqrt(0.1)), -3, 5)
lines(density(resample_particle_y_samples(particle_set = BF_standard_n20$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'red')
lines(density(resample_particle_y_samples(particle_set = BF_generalised_n20$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'blue')
##### Bayesian Fusion (with SH guidance) #####
print('### performing standard Bayesian Fusion (with n=20)')
vanilla_guide <- BF_guidance(condition = 'SH',
CESS_0_threshold = 0.2,
CESS_j_threshold = 0.2,
C = C,
d = 1,
data_size = 1,
b = sd^2,
sub_posterior_samples = input_samples,
sub_posterior_means = sapply(input_samples, mean),
vanilla = TRUE)
input_particles_BF_vanilla_guide <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = FALSE,
number_of_steps = length(vanilla_guide$mesh))
BF_standard_using_guidance <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_vanilla_guide,
N = nsamples,
m = C,
time_mesh = vanilla_guide$mesh,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = rep(1, C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_standard_using_guidance$ESS)
print('CESS:'); print(BF_standard_using_guidance$CESS)
print('time_mesh:'); print(BF_standard_using_guidance$particles$time_mesh)
print('### performing Bayesian Fusion (with n=20) with a preconditioning matrix')
gen_guide <- BF_guidance(condition = 'SH',
CESS_0_threshold = 0.2,
CESS_j_threshold = 0.2,
C = C,
d = 1,
data_size = 1,
sub_posterior_samples = input_samples,
sub_posterior_means = sapply(input_samples, mean),
precondition_matrices = sapply(input_samples, var),
inv_precondition_matrices = 1/sapply(input_samples, var),
vanilla = FALSE)
input_particles_BF_gen_guide <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = FALSE,
number_of_steps = length(gen_guide$mesh))
BF_generalised_using_guidance <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_gen_guide,
N = nsamples,
m = C,
time_mesh = gen_guide$mesh,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = sapply(input_samples, var),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_generalised_using_guidance$ESS)
print('CESS:'); print(BF_generalised_using_guidance$CESS)
print('time_mesh:'); print(BF_generalised_using_guidance$particles$time_mesh)
BF_generalised_using_guidance_adaptive <- parallel_GBF_uniGaussian(particles_to_fuse = input_particles_BF_gen_guide,
N = nsamples,
m = C,
time_mesh = gen_guide$mesh,
means = rep(mean, C),
sds = rep(sd, C),
betas = rep(beta, C),
precondition_values = sapply(input_samples, var),
ESS_threshold = 0.5,
sub_posterior_means = sapply(input_samples, mean),
adaptive_mesh = TRUE,
adaptive_mesh_parameters = list('data_size' = 1,
'CESS_j_threshold' = 0.2,
'vanilla' = FALSE),
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_generalised_using_guidance_adaptive$ESS)
print('CESS:'); print(BF_generalised_using_guidance_adaptive$CESS)
print('time_mesh:'); print(BF_generalised_using_guidance_adaptive$particles$time_mesh)
# plots
# proposals
curve(dnorm(x, mean = 1.2, sd = sqrt(0.1)), -3, 5)
lines(density(BF_standard_using_guidance$proposed_samples), col = 'red')
lines(density(BF_generalised_using_guidance$proposed_samples), col = 'blue')
# resampled
curve(dnorm(x, mean = 1.2, sd = sqrt(0.1)), -3, 5)
lines(density(resample_particle_y_samples(particle_set = BF_standard_using_guidance$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'red')
lines(density(resample_particle_y_samples(particle_set = BF_generalised_using_guidance$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'blue')
lines(density(resample_particle_y_samples(particle_set = BF_generalised_using_guidance_adaptive$particles,
multivariate = FALSE,
resampling_method = 'resid',
seed = seed)$y_samples),
col = 'green')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.