tests/rethinking_tests/sim counterfactual test.R

library(rethinking)

data(WaffleDivorce)
d <- list()
d$A <- standardize( WaffleDivorce$MedianAgeMarriage )
d$D <- standardize( WaffleDivorce$Divorce )
d$M <- standardize( WaffleDivorce$Marriage )

m5.3_A <- quap(
    alist(
      ## A -> D <- M
        D ~ dnorm( mu , sigma ) ,
        mu <- a + bM*M + bA*A ,
        a ~ dnorm( 0 , 0.2 ) ,
        bM ~ dnorm( 0 , 0.5 ) ,
        bA ~ dnorm( 0 , 0.5 ) ,
        sigma ~ dexp( 1 ),
      ## A -> M
        M ~ dnorm( mu_M , sigma_M ),
        mu_M <- aM + bAM*A,
        aM ~ dnorm( 0 , 0.2 ),
        bAM ~ dnorm( 0 , 0.5 ),
        sigma_M ~ dexp( 1 )
    ) , data = d )

A_seq <- seq( from=-2 , to=2 , length.out=30 )

# prep data
sim_dat <- data.frame( A=A_seq )

# simulate M and then D, using A_seq
s <- sim( m5.3_A , data=sim_dat , vars=c("M","D") )

# display counterfactual predictions
plot( sim_dat$A , colMeans(s$D) , ylim=c(-2,2) , type="l" , 
    xlab="manipulated A" , ylab="counterfactual D"  )
shade( apply(s$D,2,PI) , sim_dat$A )
mtext( "Total counterfactual effect of A on D" )

sim_dat <- data.frame( M=seq(from=-2,to=2,length.out=30) , A=0 )
s <- sim( m5.3_A , data=sim_dat , vars="D" )

plot( sim_dat$M , colMeans(s) , ylim=c(-2,2) , type="l" , 
    xlab="manipulated M" , ylab="counterfactual D"  )
shade( apply(s,2,PI) , sim_dat$M )
mtext( "Total counterfactual effect of M on D" )

### ulam

data(WaffleDivorce)
d <- list()
d$A <- standardize( WaffleDivorce$MedianAgeMarriage )
d$D <- standardize( WaffleDivorce$Divorce )
d$M <- standardize( WaffleDivorce$Marriage )

mu5.3_A <- ulam(
    alist(
      ## A -> D <- M
        D ~ dnorm( mu , sigma ) ,
        mu <- a + bM*M + bA*A ,
        a ~ dnorm( 0 , 0.2 ) ,
        bM ~ dnorm( 0 , 0.5 ) ,
        bA ~ dnorm( 0 , 0.5 ) ,
        sigma ~ dexp( 1 ),
      ## A -> M
        M ~ dnorm( mu_M , sigma_M ),
        mu_M <- aM + bAM*A,
        aM ~ dnorm( 0 , 0.2 ),
        bAM ~ dnorm( 0 , 0.5 ),
        sigma_M ~ dexp( 1 )
    ) , data = d )

A_seq <- seq( from=-2 , to=2 , length.out=30 )

# prep data
sim_dat <- data.frame( A=A_seq )

# simulate M and then D, using A_seq
s <- sim( mu5.3_A , data=sim_dat , vars=c("M","D") )

# display counterfactual predictions
plot( sim_dat$A , colMeans(s$D) , ylim=c(-2,2) , type="l" , 
    xlab="manipulated A" , ylab="counterfactual D"  )
shade( apply(s$D,2,PI) , sim_dat$A )
mtext( "Total counterfactual effect of A on D" )
rmcelreath/rethinking documentation built on Aug. 26, 2024, 5:54 p.m.