PhenoGMM: Train GMM-fitted model to FCS data.

Description Usage Arguments Examples

View source: R/PhenoGMM.R

Description

Train GMM-fitted model to FCS data.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
PhenoGMM(
  fcs_x,
  param,
  downsample = 0,
  nG = 128,
  auto_nG = FALSE,
  nG_interval = 4,
  fcs_scale = FALSE,
  diagnostic_plot = FALSE
)

Arguments

fcs_x

flowSet object with input data on which the model should be built

param

parameters to be used in the mixture modeling.

downsample

Indicate to which sample size individual samples should be downsampled. By default no downsampling is performed

nG

Number of mixtures to use. Defaults to 128.

auto_nG

TRUE/FALSE. Option to choose best number of mixtures from 1:nG based on BIC. Defaults to FALSE which forces nG clusters.

nG_interval

if auto_nG = TRUE, specify the intervals from nG_interval:nG to calculate BIC for. Defaults to 4.

fcs_scale

Should data be scaled/normalized by row and column before running GMM? Defaults to FALSE.

diagnostic_plot

Specify whether a diagnostic plot should be made showing the cluster allocation of each cell in the specified parameter space.

Examples

1
2
3
4
5
6
7
data(flowData_transformed)
testGMM <- PhenoGMM(flowData_transformed, downsample = 1e3, 
nG = 30,
auto_nG = TRUE,
nG_interval = 10,
param = c("FL1-H", "FL3-H"))
testPred <- PhenoMaskGMM(flowData_transformed, gmm = testGMM)

rprops/Phenoflow_package documentation built on Sept. 22, 2020, 5:43 p.m.