plot_beta_fcm: Plot function for beta diversity analysis of FCM data

Description Usage Arguments Examples

View source: R/plot_beta_fcm.R

Description

This function visualizes the beta diversity analysis generated by beta_div_fcm()

Usage

1
2
3
4
5
6
7
plot_beta_fcm(
  x,
  color = NA,
  shape = NA,
  labels = c("Factor 1", "Factor 2"),
  legend.pres = NULL
)

Arguments

x

flowbasis object generated by flowBasis()

color

A vector of factors indicating the groups to be colored in the plot

shape

A vector of factors indicating the shape of the groups in the plot

labels

A vector of length 2, giving the labels for color and shape to be used in the legend. Has to be in the order c('color','shape').

legend.pres

Surpresses legend when there is no definition of labels.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
## Short example

# Load precomputed fingerprint object
data(CoolingTower)

# Calculate diversity values
beta <- beta_div_fcm(CoolingTower,ord.type="PCoA")
plot_beta_fcm(beta)

## Full data processing example

# Load raw data (imported using flowCore)
data(flowData)
# Asinh transform and select parameters of interest (cells were stained with Sybr Green I).
flowData_transformed <- flowCore::transform(flowData,`FL1-H`=asinh(`FL1-H`),
       `SSC-H`=asinh(`SSC-H`), 
       `FL3-H`=asinh(`FL3-H`), 
       `FSC-H`=asinh(`FSC-H`))
param=c('FL1-H', 'FL3-H','SSC-H','FSC-H')
flowData_transformed = flowData_transformed[,param]

# Create a PolygonGate for denoising the dataset
# Define coordinates for gate in sqrcut1 in format: c(x,x,x,x,y,y,y,y)
sqrcut1 <- matrix(c(8.75,8.75,14,14,3,7.5,14,3),ncol=2, nrow=4)
colnames(sqrcut1) <- c('FL1-H','FL3-H')
polyGate1 <- flowCore::polygonGate(.gate=sqrcut1, filterId = 'Total Cells')

# Gating quality check
flowViz::xyplot(`FL3-H` ~ `FL1-H`, data=flowData_transformed[1], filter=polyGate1,
         scales=list(y=list(limits=c(0,14)),
         x=list(limits=c(6,16))),
         axis = lattice::axis.default, nbin=125, 
         par.strip.text=list(col='white', font=2, cex=2), smooth=FALSE)
 
 # Isolate only the cellular information based on the polyGate1
 flowData_transformed <- flowCore::Subset(flowData_transformed, polyGate1)
 
 # Normalize parameter values to [0,1] interval based on max. value across parameters
 summary <- flowCore::fsApply(x=flowData_transformed,FUN=function(x) apply(x,2,max),use.exprs=TRUE)
 max = max(summary[,1])
 mytrans <- function(x) x/max
 flowData_transformed <- flowCore::transform(flowData_transformed,`FL1-H`=mytrans(`FL1-H`),
         `FL3-H`=mytrans(`FL3-H`), 
         `SSC-H`=mytrans(`SSC-H`),
         `FSC-H`=mytrans(`FSC-H`))
 
 # Calculate fingerprint
 fbasis <- flowFDA::flowBasis(flowData_transformed, param, nbin=128, 
         bw=0.01, normalize=function(x) x)
 
 # Calculate diversity
 beta <- beta_div_fcm(fbasis,ord.type="PCoA")
 plot_beta_fcm(beta)

rprops/Phenoflow_package documentation built on Sept. 22, 2020, 5:43 p.m.