Description Usage Arguments Examples
This function performs beta diversity analysis on FCM data. The output can be fed into the plot.beta.fcm() function for visualization.
1 2 3 4 5 6 7 8 9 10 | beta_div_fcm(
x,
d = 4,
dist = "bray",
k = 2,
iter = 100,
ord.type = c("NMDS", "PCoA"),
INDICES = NULL,
binary = FALSE
)
|
x |
flowbasis object generated by flowBasis() |
d |
Rounding factor for density values. Defaults to 4. |
dist |
Distance metric to use in the vegdist() function. Defaults to bray. |
k |
Number of dimensions to project your samples into. Defaults to 2. |
iter |
Number of iterations for NMDS analysis. Defaults to 100. |
ord.type |
Choose between NMDS or PCoA analysis. |
INDICES |
Factor vector indicating the samples to average for the beta-diversity analysis |
binary |
Specify whether the data should be transformed to presence/absence. Defaults to FALSE. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ## Short example
# Load precomputed fingerprint object
data(CoolingTower)
# Calculate diversity values
beta <- beta_div_fcm(CoolingTower,ord.type="PCoA")
plot_beta_fcm(beta)
## Full data processing example
# Load raw data (imported using flowCore)
data(flowData)
# Asinh transform and select parameters of interest (cells were stained with Sybr Green I).
flowData_transformed <- flowCore::transform(flowData,`FL1-H`=asinh(`FL1-H`),
`SSC-H`=asinh(`SSC-H`),
`FL3-H`=asinh(`FL3-H`),
`FSC-H`=asinh(`FSC-H`))
param=c('FL1-H', 'FL3-H','SSC-H','FSC-H')
flowData_transformed = flowData_transformed[,param]
# Create a PolygonGate for denoising the dataset
# Define coordinates for gate in sqrcut1 in format: c(x,x,x,x,y,y,y,y)
sqrcut1 <- matrix(c(8.75,8.75,14,14,3,7.5,14,3),ncol=2, nrow=4)
colnames(sqrcut1) <- c('FL1-H','FL3-H')
polyGate1 <- flowCore::polygonGate(.gate=sqrcut1, filterId = 'Total Cells')
# Gating quality check
flowViz::xyplot(`FL3-H` ~ `FL1-H`, data=flowData_transformed[1], filter=polyGate1,
scales=list(y=list(limits=c(0,14)),
x=list(limits=c(6,16))),
axis = lattice::axis.default, nbin=125,
par.strip.text=list(col='white', font=2, cex=2), smooth=FALSE)
# Isolate only the cellular information based on the polyGate1
flowData_transformed <- flowCore::Subset(flowData_transformed, polyGate1)
# Normalize parameter values to [0,1] interval based on max. value across parameters
summary <- flowCore::fsApply(x=flowData_transformed,FUN=function(x) apply(x,2,max),use.exprs=TRUE)
max = max(summary[,1])
mytrans <- function(x) x/max
flowData_transformed <- flowCore::transform(flowData_transformed,`FL1-H`=mytrans(`FL1-H`),
`FL3-H`=mytrans(`FL3-H`),
`SSC-H`=mytrans(`SSC-H`),
`FSC-H`=mytrans(`FSC-H`))
# Calculate fingerprint
fbasis <- flowFDA::flowBasis(flowData_transformed, param, nbin=128,
bw=0.01, normalize=function(x) x)
# Calculate diversity
beta <- beta_div_fcm(fbasis, ord.type="PCoA")
plot_beta_fcm(beta)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.