# To analyse the output produced by a cpp simulation
# Global settings
HOME_DIR <- "~/SysBioProject/rcombinator/cpp/"
setwd(HOME_DIR)
source('analyse_output/header.R')
library(cowplot)
OUTPUT_LOC = "./unified_output/"
SAVE_LOC = "../../report/images/"
# Create filename from parameters
create_filename <- function(
timestep, final_time, num_runs,
init_num_seq, num_recomb, recomb_means,
num_sensitive, p_sensitive,
burst_mean, burst_p,
max_total_copies, max_active_copies,
sim_type)
{
if (sim_type == NO_BURSTS)
{
filename = paste(timestep, final_time, num_runs,
init_num_seq,
sep="_")
}
else if (sim_type == WITHOUT_FLAGS)
{
if (burst_p == 1) {str_burst_p <- paste0(burst_p, ".0") }
else { str_burst_p <- paste0(burst_p) }
filename = paste(timestep, final_time, num_runs,
burst_mean, str_burst_p,
max_total_copies,
sep="_")
}
else if (sim_type == WITH_FLAGS)
{
if (burst_p == 1) {str_burst_p <- paste0(burst_p, ".0") }
else { str_burst_p <- paste0(burst_p) }
filename = paste(timestep, final_time, num_runs,
num_sensitive, p_sensitive,
burst_mean, str_burst_p,
sep="_")
}
else
{
print("NOT A VALID SIM TYPE")
}
filename = paste0(sim_type, "_", filename)
return(filename)
}
# PARAMETER SCAN
source("./../R/copy_number_growth.R")
source("./../R/find_parameter_balance_copy_number_variation.R")
p <- find_paramater_balance_copy_number_variation()
save_plot(paste0(SAVE_LOC, "parameter_scan.png"),
p, base_height = 12, base_width = 18)
# GENE OUTPUT BASIC POINT MUTATION MODEL
sim_type <- NO_BURSTS
timestep <- 1
final_time <- 500
num_runs <- 20
init_num_seq_v <- c(10, 100, 1000)
source('analyse_output/header.R')
for(init_num_seq in init_num_seq_v)
{
gene_f <- create_filename(
sim_type = sim_type,
timestep = timestep,
final_time = final_time,
num_runs = num_runs,
init_num_seq = init_num_seq
)
gene <- get_data(gene_f, sim_type, OUTPUT_LOC)
gene_p <-no_bursts_plot(gene)
save_plot(paste0(SAVE_LOC,"gene_over_time_",init_num_seq,".png"),
gene_p, base_height = 10, base_width = 13)
# init in blue
# pair in red
}
# FLAGGING NO BURSTS
sim_type <- WITH_FLAGS
timestep <- 1
final_time <- 500
num_runs <- 10
init_num_seq <- 100
num_sensitive_v <- c(2, 10, 50)
p_sensitive_v <- c(1.0, 0.5, 0.1)
source('analyse_output/header.R')
for(num_sensitive in num_sensitive_v)
{
for(p_sensitive in p_sensitive_v)
{
flags_no_bursts_f <- paste("flags_no_bursts",
timestep, final_time, num_runs,
init_num_seq, num_sensitive, p_sensitive,
sep="_")
if (p_sensitive == 1)
{
flags_no_bursts_f <- paste0(flags_no_bursts_f, ".0")
}
flags_no_bursts <- get_data(flags_no_bursts_f, sim_type, OUTPUT_LOC)
flags_no_bursts_p <- flags_no_bursts_plot_all_runs(flags_no_bursts)
save_plot(paste0(SAVE_LOC,"flags_no_bursts_",init_num_seq,"_",num_sensitive,
"_",p_sensitive,".png"),
flags_no_bursts_p, base_height = 10, base_width = 13)
}
}
# comparing without flags
sim_type <- WITHOUT_FLAGS
timestep <- 1
final_time <- 500
num_runs <- 20
# burst mean burst p max total cop
burst_mean_v <- c(1, 1) #c(0.25, 1, 4, 1, 1, 1)
burst_p_v <- c(1.0, 0.1) #c( 0.1,0.1,0.1, 0.001, 1.0, 0.1)
max_total_copies_v <- c(100, 10) #c( 100,100,100, 100, 100, 10)
source('analyse_output/header.R')
for (i in 1:length(max_total_copies_v))
{
burst_mean <- burst_mean_v[i]
burst_p <- burst_p_v[i]
max_total_copies <- max_total_copies_v[i]
without_f <- create_filename(sim_type = sim_type,
timestep = timestep, final_time = final_time, num_runs = num_runs,
burst_mean = burst_mean, burst_p = burst_p,
max_total_copies = max_total_copies
)
gene_f <- create_filename(
sim_type = NO_BURSTS,
timestep = timestep,
final_time = final_time,
num_runs = num_runs,
init_num_seq = max_total_copies,
)
without <- get_data(without_f, sim_type, OUTPUT_LOC)
gene <- get_data(gene_f, NO_BURSTS, OUTPUT_LOC)
without_p_init <- without_plot_init(without, gene)
without_p_pair <- without_plot_pair(without, gene)
save_plot(paste0(SAVE_LOC,"without_init_",
burst_mean, "_", burst_p, "_", max_total_copies, ".png"),
without_p_init, base_height = 10, base_width = 12)
save_plot(paste0(SAVE_LOC,"without_pair_",
burst_mean, "_", burst_p, "_", max_total_copies, ".png"),
without_p_pair, base_height = 10, base_width = 12)
}
# comparing with flags
sim_type <- WITH_FLAGS
timestep <- 1
final_time <- 500
num_runs <- 20
num_sensitive_v <- c(10 , 10)
p_sensitive_v <- c(0.5, 0.5)
burst_mean_v <- c(1.0,0.25)
burst_p_v <- c(0.1, 0.1)
max_time_v <- c(500,150)
init_num_seq <- 100
for (i in 1:length(p_sensitive_v))
{
num_sensitive <- num_sensitive_v[i]
p_sensitive <- p_sensitive_v[i]
burst_mean <- burst_mean_v[i]
burst_p <- burst_p_v[i]
max_time <- max_time_v[i]
source('analyse_output/header.R')
with_f <- create_filename( sim_type = sim_type,
timestep = timestep, final_time = final_time, num_runs = num_runs,
num_sensitive = num_sensitive, p_sensitive = p_sensitive,
burst_mean = burst_mean, burst_p = burst_p
)
gene_f <- create_filename( sim_type = NO_BURSTS,
timestep = timestep, final_time = final_time, num_runs = num_runs,
init_num_seq = init_num_seq
)
with <- get_data(with_f, sim_type, OUTPUT_LOC)
gene <- get_data(gene_f, NO_BURSTS, OUTPUT_LOC)
with_p_init <- with_plot_init(with, gene, max_time)
with_p_pair <- with_plot_pair(with, gene, max_time)
save_plot(paste0(SAVE_LOC,"with_init_", num_sensitive, "_", p_sensitive, "_",
burst_mean, "_", burst_p, ".png"),
with_p_init, base_height = 10, base_width = 12)
save_plot(paste0(SAVE_LOC,"with_pair_", num_sensitive, "_", p_sensitive, "_",
burst_mean, "_", burst_p, ".png"),
with_p_pair, base_height = 10, base_width = 12)
}
#################################################
################### END #########################
#################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.