#' @title Survival Analysis
#' @importFrom R6 R6Class
#' @import jmvcore
#' @import magrittr
#'
survivalClass <- if (requireNamespace('jmvcore'))
R6::R6Class(
"survivalClass",
inherit = survivalBase,
private = list(
.init = function() {
if (self$options$ph_cox) {
# Disable tables
self$results$cox_ph$setVisible(TRUE)
}
if (!(self$options$ph_cox)) {
# Disable tables
self$results$cox_ph$setVisible(FALSE)
}
# if (self$options$sas) {
# # Disable tables
# self$results$medianSummary$setVisible(FALSE)
# self$results$medianTable$setVisible(FALSE)
# self$results$coxSummary$setVisible(FALSE)
# self$results$coxTable$setVisible(FALSE)
# self$results$tCoxtext2$setVisible(FALSE)
# self$results$survTableSummary$setVisible(FALSE)
# self$results$survTable$setVisible(FALSE)
# self$results$pairwiseSummary$setVisible(FALSE)
# self$results$pairwiseTable$setVisible(FALSE)
# }
}
,
.getData = function() {
mydata <- self$data
mydata$row_names <- rownames(mydata)
original_names <- names(mydata)
labels <- setNames(original_names, original_names)
mydata <- mydata %>% janitor::clean_names()
corrected_labels <-
setNames(original_names, names(mydata))
mydata <- labelled::set_variable_labels(.data = mydata,
.labels = corrected_labels)
all_labels <- labelled::var_label(mydata)
mytime <-
names(all_labels)[all_labels == self$options$elapsedtime]
myoutcome <-
names(all_labels)[all_labels == self$options$outcome]
mydxdate <-
names(all_labels)[all_labels == self$options$dxdate]
myfudate <-
names(all_labels)[all_labels == self$options$fudate]
myexplanatory <-
names(all_labels)[all_labels == self$options$explanatory]
return(list(
"mydata_labelled" = mydata
, "mytime_labelled" = mytime
, "myoutcome_labelled" = myoutcome
, "mydxdate_labelled" = mydxdate
, "myfudate_labelled" = myfudate
, "myexplanatory_labelled" = myexplanatory
))
}
,
.todo = function() {
todo <- glue::glue(
"
<br>Welcome to ClinicoPath
<br><br>
This tool will help you calculate median survivals and 1,3,5-yr survivals for a given fisk factor.
<br><br>
Explanatory variable should be categorical (ordinal or nominal).
<br><br>
Select outcome level from Outcome variable.
<br><br>
Outcome Level: if patient is dead or event (recurrence) occured. You may also use advanced outcome options depending on your analysis type.
<br><br>
Survival time should be numeric and continuous. You may also use dates to calculate survival time in advanced elapsed time options.
<br><br>
This function uses survival, survminer, and finalfit packages. Please cite jamovi and the packages as given below.
<br><hr>
<br>
See details for survival <a href = 'https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf'>here</a>."
)
html <- self$results$todo
html$setContent(todo)
}
# Define Survival Time ----
,
.definemytime = function() {
# Read Labelled Data ----
labelled_data <- private$.getData()
mydata <- labelled_data$mydata_labelled
mytime_labelled <- labelled_data$mytime_labelled
mydxdate_labelled <- labelled_data$mydxdate_labelled
myfudate_labelled <- labelled_data$myfudate_labelled
tint <- self$options$tint
if (!tint) {
# Precalculated Time ----
mydata[["mytime"]] <-
jmvcore::toNumeric(mydata[[mytime_labelled]])
} else if (tint) {
# Time Interval ----
dxdate <- mydxdate_labelled # self$options$dxdate
fudate <- myfudate_labelled #self$options$fudate
timetypedata <- self$options$timetypedata
# # Define a mapping from timetypedata to lubridate functions
# lubridate_functions <- list(
# ymdhms = lubridate::ymd_hms,
# ymd = lubridate::ymd,
# ydm = lubridate::ydm,
# mdy = lubridate::mdy,
# myd = lubridate::myd,
# dmy = lubridate::dmy,
# dym = lubridate::dym
# )
# # Apply the appropriate lubridate function based on timetypedata
# if (timetypedata %in% names(lubridate_functions)) {
# func <- lubridate_functions[[timetypedata]]
# mydata[["start"]] <- func(mydata[[dxdate]])
# mydata[["end"]] <- func(mydata[[fudate]])
# }
if (timetypedata == "ymdhms") {
mydata[["start"]] <- lubridate::ymd_hms(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::ymd_hms(mydata[[fudate]])
}
if (timetypedata == "ymd") {
mydata[["start"]] <- lubridate::ymd(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::ymd(mydata[[fudate]])
}
if (timetypedata == "ydm") {
mydata[["start"]] <- lubridate::ydm(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::ydm(mydata[[fudate]])
}
if (timetypedata == "mdy") {
mydata[["start"]] <- lubridate::mdy(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::mdy(mydata[[fudate]])
}
if (timetypedata == "myd") {
mydata[["start"]] <- lubridate::myd(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::myd(mydata[[fudate]])
}
if (timetypedata == "dmy") {
mydata[["start"]] <- lubridate::dmy(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::dmy(mydata[[fudate]])
}
if (timetypedata == "dym") {
mydata[["start"]] <- lubridate::dym(mydata[[dxdate]])
mydata[["end"]] <-
lubridate::dym(mydata[[fudate]])
}
if ( sum(!is.na(mydata[["start"]])) == 0 || sum(!is.na(mydata[["end"]])) == 0) {
stop(paste0("Time difference cannot be calculated. Make sure that time type in variables are correct. Currently it is: ", self$options$timetypedata)
)
}
timetypeoutput <-
jmvcore::constructFormula(terms = self$options$timetypeoutput)
mydata <- mydata %>%
dplyr::mutate(interval = lubridate::interval(start, end))
mydata <- mydata %>%
dplyr::mutate(mytime = lubridate::time_length(interval, timetypeoutput))
}
df_time <- mydata %>% jmvcore::select(c("row_names", "mytime"))
return(df_time)
}
# Define Outcome ----
,
.definemyoutcome = function() {
labelled_data <- private$.getData()
mydata <- labelled_data$mydata_labelled
myoutcome_labelled <- labelled_data$myoutcome_labelled
contin <- c("integer", "numeric", "double")
outcomeLevel <- self$options$outcomeLevel
multievent <- self$options$multievent
outcome1 <- mydata[[myoutcome_labelled]]
if (!multievent) {
if (inherits(outcome1, contin)) {
if (!((length(unique(
outcome1[!is.na(outcome1)]
)) == 2) && (sum(unique(
outcome1[!is.na(outcome1)]
)) == 1))) {
stop(
'When using continuous variable as an outcome, it must only contain 1s and 0s. If patient is dead or event (recurrence) occured it is 1. If censored (patient is alive or free of disease) at the last visit it is 0.'
)
}
mydata[["myoutcome"]] <- mydata[[myoutcome_labelled]]
# mydata[[self$options$outcome]]
} else if (inherits(outcome1, "factor")) {
mydata[["myoutcome"]] <-
ifelse(
test = outcome1 == outcomeLevel,
yes = 1,
no = 0
)
} else {
stop(
'When using continuous variable as an outcome, it must only contain 1s and 0s. If patient is dead or event (recurrence) occured it is 1. If censored (patient is alive or free of disease) at the last visit it is 0. If you are using a factor as an outcome, please check the levels and content.'
)
}
} else if (multievent) {
analysistype <- self$options$analysistype
dod <- self$options$dod
dooc <- self$options$dooc
awd <- self$options$awd
awod <- self$options$awod
if (analysistype == 'overall') {
# Overall ----
# (Alive) <=> (Dead of Disease & Dead of Other Causes)
mydata[["myoutcome"]] <- NA_integer_
mydata[["myoutcome"]][outcome1 == awd] <- 0
mydata[["myoutcome"]][outcome1 == awod] <- 0
mydata[["myoutcome"]][outcome1 == dod] <- 1
mydata[["myoutcome"]][outcome1 == dooc] <- 1
} else if (analysistype == 'cause') {
# Cause Specific ----
# (Alive & Dead of Other Causes) <=> (Dead of Disease)
mydata[["myoutcome"]] <- NA_integer_
mydata[["myoutcome"]][outcome1 == awd] <- 0
mydata[["myoutcome"]][outcome1 == awod] <- 0
mydata[["myoutcome"]][outcome1 == dod] <- 1
mydata[["myoutcome"]][outcome1 == dooc] <- 0
} else if (analysistype == 'compete') {
# Competing Risks ----
# Alive <=> Dead of Disease accounting for Dead of Other Causes
# https://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html#part_3:_competing_risks
mydata[["myoutcome"]] <- NA_integer_
mydata[["myoutcome"]][outcome1 == awd] <- 0
mydata[["myoutcome"]][outcome1 == awod] <- 0
mydata[["myoutcome"]][outcome1 == dod] <- 1
mydata[["myoutcome"]][outcome1 == dooc] <- 2
}
}
df_outcome <- mydata %>% jmvcore::select(c("row_names", "myoutcome"))
return(df_outcome)
}
# Define Factor ----
,
.definemyfactor = function() {
labelled_data <- private$.getData()
mydata_labelled <- labelled_data$mydata_labelled
myexplanatory_labelled <- labelled_data$myexplanatory_labelled
mydata <- mydata_labelled
mydata[["myfactor"]] <- mydata[[myexplanatory_labelled]]
df_factor <- mydata %>% jmvcore::select(c("row_names","myfactor"))
return(df_factor)
}
# Clean Data For Analysis ----
,
.cleandata = function() {
labelled_data <- private$.getData()
mydata_labelled <- labelled_data$mydata_labelled
mytime_labelled <- labelled_data$mytime_labelled
myoutcome_labelled <- labelled_data$myoutcome_labelled
mydxdate_labelled <- labelled_data$mydxdate_labelled
myfudate_labelled <- labelled_data$myfudate_labelled
myexplanatory_labelled <- labelled_data$myexplanatory_labelled
time <- private$.definemytime()
outcome <- private$.definemyoutcome()
factor <- private$.definemyfactor()
if (is.null(time) || is.null(outcome) || is.null(factor)) {
stop("Error: Data could not be cleaned for analysis.")
}
cleanData <- dplyr::left_join(time, outcome, by = "row_names") %>%
dplyr::left_join(factor, by = "row_names")
# Landmark ----
# https://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html#landmark_method
if (self$options$uselandmark) {
landmark <- jmvcore::toNumeric(self$options$landmark)
cleanData <- cleanData %>%
dplyr::filter(mytime >= landmark) %>%
dplyr::mutate(mytime = mytime - landmark)
}
# Time Dependent Covariate ----
# https://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html#time-dependent_covariate
# Names cleanData ----
if (self$options$tint) {
name1time <- "CalculatedTime"
}
if (!self$options$tint &&
!is.null(self$options$elapsedtime)) {
name1time <- mytime_labelled
}
name2outcome <- myoutcome_labelled
if (self$options$multievent) {
name2outcome <- "CalculatedOutcome"
}
if (!is.null(self$options$explanatory)
) {
name3explanatory <- myexplanatory_labelled
}
cleanData <- cleanData %>%
dplyr::rename(
!!name1time := mytime,
!!name2outcome := myoutcome,
!!name3explanatory := myfactor
)
# naOmit ----
cleanData <- jmvcore::naOmit(cleanData)
# Prepare Data For Plots ----
plotData <- list(
"name1time" = name1time,
"name2outcome" = name2outcome,
"name3explanatory" = name3explanatory,
"cleanData" = cleanData
)
image <- self$results$plot
image$setState(plotData)
image2 <- self$results$plot2
image2$setState(plotData)
image3 <- self$results$plot3
image3$setState(plotData)
image6 <- self$results$plot6
image6$setState(plotData)
# Return Data ----
return(
list(
"name1time" = name1time,
"name2outcome" = name2outcome,
"name3explanatory" = name3explanatory,
"cleanData" = cleanData,
"mytime_labelled" = mytime_labelled,
"myoutcome_labelled" = myoutcome_labelled,
"mydxdate_labelled" = mydxdate_labelled,
"myfudate_labelled" = myfudate_labelled,
"myexplanatory_labelled" = myexplanatory_labelled
)
)
}
# Run Analysis ----
,
.run = function() {
# Errors, Warnings ----
## No variable todo ----
## Define subconditions ----
subcondition1a <- !is.null(self$options$outcome)
subcondition1b1 <- self$options$multievent
subcondition1b2 <- !is.null(self$options$dod)
subcondition1b3 <- !is.null(self$options$dooc)
# subcondition1b4 <- !is.null(self$options$awd)
# subcondition1b5 <- !is.null(self$options$awod)
subcondition2a <- !is.null(self$options$elapsedtime)
subcondition2b1 <- self$options$tint
subcondition2b2 <- !is.null(self$options$dxdate)
subcondition2b3 <- !is.null(self$options$fudate)
condition3 <- !is.null(self$options$explanatory)
condition1 <- subcondition1a && !subcondition1b1 || subcondition1b1 && subcondition1b2 || subcondition1b1 && subcondition1b3
condition2 <- subcondition2b1 && subcondition2b2 && subcondition2b3 || subcondition2a && !subcondition2b1 && !subcondition2b2 && !subcondition2b3
not_continue_analysis <- !(condition1 && condition2 && condition3)
if (not_continue_analysis) {
private$.todo()
self$results$medianSummary$setVisible(FALSE)
self$results$medianTable$setVisible(FALSE)
self$results$coxSummary$setVisible(FALSE)
self$results$coxTable$setVisible(FALSE)
self$results$tCoxtext2$setVisible(FALSE)
self$results$cox_ph$setVisible(FALSE)
self$results$plot8$setVisible(FALSE)
self$results$survTableSummary$setVisible(FALSE)
self$results$survTable$setVisible(FALSE)
self$results$pairwiseSummary$setVisible(FALSE)
self$results$pairwiseTable$setVisible(FALSE)
self$results$plot$setVisible(FALSE)
self$results$plot2$setVisible(FALSE)
self$results$plot3$setVisible(FALSE)
self$results$plot6$setVisible(FALSE)
self$results$todo$setVisible(TRUE)
return()
} else {
self$results$todo$setVisible(FALSE)
}
# Empty data ----
if (nrow(self$data) == 0)
stop('Data contains no (complete) rows')
# Get Clean Data ----
results <- private$.cleandata()
if (is.null(results)) {
return()
}
# Run Analysis ----
## Median Survival ----
private$.medianSurv(results)
## Cox ----
private$.cox(results)
## Survival Table ----
private$.survTable(results)
## Pairwise ----
if (self$options$pw
# && !self$options$sas
) {
private$.pairwise(results)
}
# Add Calculated Time to Data ----
# self$results$mydataview$setContent(
# list(
# results
# )
# )
if (self$options$tint && self$options$calculatedtime && self$results$calculatedtime$isNotFilled()) {
self$results$calculatedtime$setRowNums(results$cleanData$row_names)
self$results$calculatedtime$setValues(results$cleanData$CalculatedTime)
}
# Add Redefined Outcome to Data ----
if (self$options$multievent && self$options$outcomeredefined && self$results$outcomeredefined$isNotFilled()) {
self$results$outcomeredefined$setRowNums(results$cleanData$row_names)
self$results$outcomeredefined$setValues(results$cleanData$CalculatedOutcome)
}
}
# Median Survival Function ----
,
.medianSurv = function(results) {
mytime <- results$name1time
myoutcome <- results$name2outcome
myfactor <- results$name3explanatory
myexplanatory_labelled <- results$myexplanatory_labelled
mydata <- results$cleanData
mydata[[mytime]] <-
jmvcore::toNumeric(mydata[[mytime]])
## Median Survival Table ----
formula <-
paste('survival::Surv(',
mytime,
',',
myoutcome,
') ~ ',
myfactor)
formula <- as.formula(formula)
km_fit <- survival::survfit(formula, data = mydata)
km_fit_median_df <- summary(km_fit)
# medianSummary2 <-
# as.data.frame(km_fit_median_df$table)
# self$results$medianSummary2$setContent(medianSummary2)
results1html <-
as.data.frame(km_fit_median_df$table) %>%
janitor::clean_names(dat = ., case = "snake") %>%
tibble::rownames_to_column(.data = .)
results1html[, 1] <- gsub(pattern = ", ",
replacement = " and ",
x = results1html[, 1])
results1table <- results1html
names(results1table)[1] <- "factor"
results2table <- results1table
results2table$factor <- gsub(pattern = paste0(myexplanatory_labelled,"="),
replacement = "",
x = results1table$factor)
# self$results$medianSummary2$setContent(results2table)
medianTable <- self$results$medianTable
data_frame <- results2table
for (i in seq_along(data_frame[, 1, drop = T])) {
medianTable$addRow(rowKey = i, values = c(data_frame[i,]))
}
## Median Survival Summary ----
results1table %>%
dplyr::mutate(
description =
glue::glue(
"When {factor}, median survival is {round(median, digits = 1)} [{round(x0_95lcl, digits = 1)} - {round(x0_95ucl, digits = 1)}, 95% CI] ",
self$options$timetypeoutput,
"."
)
) %>%
dplyr::mutate(
description = dplyr::case_when(
is.na(median) ~ paste0(
glue::glue("{description} \n Note that when {factor}, the survival curve does not drop below 1/2 during \n the observation period, thus the median survival is undefined.")),
TRUE ~ paste0(description)
)
) %>%
dplyr::mutate(description = gsub(
pattern = "=",
replacement = " is ",
x = description
)) %>%
dplyr::mutate(description = gsub(
pattern = myexplanatory_labelled,
replacement = self$options$explanatory,
x = description
)) %>%
dplyr::select(description) %>%
dplyr::pull(.) -> km_fit_median_definition
medianSummary <- c(km_fit_median_definition,
"The median survival time is when 50% of subjects have experienced the event.",
"This means that 50% of subjects in this group survived longer than this time period."
)
self$results$medianSummary$setContent(medianSummary)
}
## Cox Regression Function ----
,
.cox = function(results) {
### Cox Regression ----
mytime <- results$name1time
mytime <- jmvcore::constructFormula(terms = mytime)
myoutcome <- results$name2outcome
myoutcome <-
jmvcore::constructFormula(terms = myoutcome)
myfactor <- results$name3explanatory
myfactor <-
jmvcore::constructFormula(terms = myfactor)
mydata <- results$cleanData
mydata[[mytime]] <-
jmvcore::toNumeric(mydata[[mytime]])
myformula <-
paste("Surv(", mytime, ",", myoutcome, ")")
finalfit::finalfit(
.data = mydata,
dependent = myformula,
explanatory = myfactor,
metrics = TRUE
) -> tCox
tCoxtext2 <- glue::glue("
<br>
<b>Model Metrics:</b>
",
unlist(tCox[[2]]),
"
<br>
")
if (self$options$uselandmark) {
landmark <- jmvcore::toNumeric(self$options$landmark)
tCoxtext2 <- glue::glue(tCoxtext2,
"Landmark time used as: ",
landmark, " ",
self$options$timetypeoutput, "."
)
}
self$results$tCoxtext2$setContent(tCoxtext2)
tCox_df <-
tibble::as_tibble(tCox[[1]], .name_repair = "minimal") %>%
janitor::clean_names(dat = ., case = "snake")
## Cox-Regression Table ----
coxTable <- self$results$coxTable
data_frame <- tCox_df
names(data_frame) <- c("Explanatory",
"Levels",
"all",
"HR_univariable",
"HR_multivariable")
for (i in seq_along(data_frame[, 1, drop = T])) {
coxTable$addRow(rowKey = i, values = c(data_frame[i,]))
}
## Cox-Table Explanation ----
tCox_df <-
tibble::as_tibble(tCox[[1]], .name_repair = "minimal") %>%
janitor::clean_names(dat = ., case = "snake")
names(tCox_df) <-
names(data_frame) <- c("Explanatory",
"Levels",
"all",
"HR_univariable",
"HR_multivariable")
# https://stackoverflow.com/questions/38470355/r-fill-empty-cell-with-value-of-last-non-empty-cell
while (length(ind <-
which(tCox_df$Explanatory == "")) > 0) {
tCox_df$Explanatory[ind] <- tCox_df$Explanatory[ind - 1]
}
# https://stackoverflow.com/questions/51180290/mutate-by-group-in-r
tCox_df %>%
dplyr::group_by(Explanatory) %>%
dplyr::mutate(firstlevel = dplyr::first(Levels)) %>%
dplyr::mutate(
coxdescription = glue::glue(
"When {Explanatory} is {Levels}, there is {HR_univariable} times risk than when {Explanatory} is {firstlevel}. \n For {Explanatory}, compared to the reference group ({firstlevel}), subjects in the {Levels} group had {HR_univariable} times the risk of experiencing the event at any given time point."
)
) %>%
dplyr::filter(HR_univariable != '-') %>%
dplyr::pull(coxdescription) -> coxSummary
coxSummary <- unlist(coxSummary)
coxSummary <- c(coxSummary,
"A hazard ratio greater than 1 indicates increased risk, while less than 1 indicates decreased risk compared to the reference group."
)
self$results$coxSummary$setContent(coxSummary)
## Proportional Hazards Assumption ----
if (self$options$ph_cox) {
mydata[[mytime]] <- jmvcore::toNumeric(mydata[[mytime]])
formula <-
paste('survival::Surv(',
mytime,
',',
myoutcome,
') ~ ',
myfactor)
formula <- as.formula(formula)
cox_model <- survival::coxph(formula, data = mydata)
# , na.action = na.exclude)
zph <- survival::cox.zph(cox_model)
self$results$cox_ph$setContent(print(zph))
image8 <- self$results$plot8
image8$setState(zph)
}
}
# Survival Table Function ----
,
.survTable = function(results) {
mytime <- results$name1time
myoutcome <- results$name2outcome
myfactor <- results$name3explanatory
myexplanatory_labelled <- results$myexplanatory_labelled
mydata <- results$cleanData
mydata[[mytime]] <-
jmvcore::toNumeric(mydata[[mytime]])
## Median Survival Table ----
formula <-
paste('survival::Surv(',
mytime,
',',
myoutcome,
') ~ ',
myfactor)
formula <- as.formula(formula)
km_fit <- survival::survfit(formula, data = mydata)
utimes <- self$options$cutp
utimes <- strsplit(utimes, ",")
utimes <- purrr::reduce(utimes, as.vector)
utimes <- as.numeric(utimes)
if (length(utimes) == 0) {
utimes <- c(12, 36, 60)
}
km_fit_summary <- summary(km_fit, times = utimes, extend = TRUE)
km_fit_df <-
as.data.frame(km_fit_summary[c("strata",
"time",
"n.risk",
"n.event",
"surv",
"std.err",
"lower",
"upper")])
# self$results$tableview$setContent(km_fit_df)
km_fit_df[, 1] <- gsub(
pattern = "thefactor=",
replacement = paste0(self$options$explanatory, " "),
x = km_fit_df[, 1]
)
km_fit_df2 <- km_fit_df
km_fit_df[, 1] <- gsub(
pattern = paste0(myexplanatory_labelled,"="),
replacement = paste0(
# self$options$explanatory,
""),
x = km_fit_df[, 1]
)
survTable <- self$results$survTable
data_frame <- km_fit_df
for (i in seq_along(data_frame[, 1, drop = T])) {
survTable$addRow(rowKey = i, values = c(data_frame[i,]))
}
## survTableSummary 1,3,5-yr survival summary ----
km_fit_df2[, 1] <- gsub(
pattern = paste0(myexplanatory_labelled,"="),
replacement = paste0(self$options$explanatory, " is "),
x = km_fit_df2[, 1]
)
km_fit_df2 %>%
dplyr::mutate(
description =
glue::glue(
"When {strata}, {time} month survival is {scales::percent(surv)} [{scales::percent(lower)}-{scales::percent(upper)}, 95% CI]. \n For the {strata} group, the estimated probability of surviving beyond {time} months was {scales::percent(surv)} [{scales::percent(lower)}-{scales::percent(upper)}, 95% CI]. \n At this time point, there were {n.risk} subjects still at risk and {n.event} events had occurred in this group."
)
) %>%
dplyr::select(description) %>%
dplyr::pull(.) -> survTableSummary
self$results$survTableSummary$setContent(survTableSummary)
}
# Pairwise Function ----
,
.pairwise = function(results) {
## pairwise comparison ----
mytime <- results$name1time
myoutcome <- results$name2outcome
myfactor <- results$name3explanatory
mydata <- results$cleanData
mydata[[mytime]] <-
jmvcore::toNumeric(mydata[[mytime]])
## Median Survival Table ----
formula <-
paste('survival::Surv(',
mytime,
',',
myoutcome,
') ~ ',
myfactor)
formula_p <- as.formula(formula)
padjustmethod <-
jmvcore::constructFormula(terms = self$options$padjustmethod)
results_pairwise <-
survminer::pairwise_survdiff(formula = formula_p,
data = mydata,
p.adjust.method = padjustmethod)
mypairwise2 <-
as.data.frame(results_pairwise[["p.value"]]) %>%
tibble::rownames_to_column(.data = .) %>%
tidyr::pivot_longer(data = ., cols = -rowname) %>%
dplyr::filter(complete.cases(.))
## Pairwise Table ----
pairwiseTable <- self$results$pairwiseTable
data_frame <- mypairwise2
for (i in seq_along(data_frame[, 1, drop = T])) {
pairwiseTable$addRow(rowKey = i, values = c(data_frame[i,]))
}
thefactor <-
jmvcore::constructFormula(terms = self$options$explanatory)
title2 <- as.character(thefactor)
pairwiseTable$setTitle(paste0('Pairwise Comparisons ', title2))
pairwiseTable$setNote(
key = padjustmethod,
note = paste0("p-value adjustement method: ",
padjustmethod)
)
mypairwise2 %>%
dplyr::mutate(
description =
glue::glue(
"The difference of ",
title2,
" between {rowname} and {name}",
" has a p-value of {format.pval(value, digits = 3, eps = 0.001)}.",
"The survival difference between {rowname} and {name} groups was tested using a log-rank test. The p-value of {format.pval(value, digits = 3, eps = 0.001)} {ifelse(value < 0.05, 'indicates a statistically significant difference', 'suggests no statistically significant difference')} in survival between these groups (using {padjustmethod} adjustment for multiple comparisons)."
)
) %>%
dplyr::pull(description) -> pairwiseSummary
pairwiseSummary <- unlist(pairwiseSummary)
self$results$pairwiseSummary$setContent(pairwiseSummary)
if (dim(mypairwise2)[1] == 1) {
self$results$pairwiseTable$setVisible(FALSE)
pairwiseSummary <-
"No pairwise comparison when explanatory variable has < 3 levels."
self$results$pairwiseSummary$setContent(pairwiseSummary)
}
}
# Survival Curve ----
,
.plot = function(image, ggtheme, theme, ...) {
sc <- self$options$sc
if (!sc)
return()
results <- image$state
if (is.null(results)) {
return()
}
mytime <- results$name1time
mytime <- jmvcore::constructFormula(terms = mytime)
myoutcome <- results$name2outcome
myoutcome <-
jmvcore::constructFormula(terms = myoutcome)
myfactor <- results$name3explanatory
myfactor <-
jmvcore::constructFormula(terms = myfactor)
plotData <- results$cleanData
plotData[[mytime]] <-
jmvcore::toNumeric(plotData[[mytime]])
myformula <-
paste("survival::Surv(", mytime, ",", myoutcome, ")")
title2 <- as.character(myfactor)
plot <- plotData %>%
finalfit::surv_plot(
.data = .,
dependent = myformula,
explanatory = myfactor,
xlab = paste0('Time (', self$options$timetypeoutput, ')'),
pval = self$options$pplot,
pval.method = self$options$pplot,
legend = 'none',
break.time.by = self$options$byplot,
xlim = c(0, self$options$endplot),
ylim = c(
self$options$ybegin_plot,
self$options$yend_plot),
title = paste0("Survival curves for ", title2),
subtitle = "Based on Kaplan-Meier estimates",
risk.table = self$options$risktable,
conf.int = self$options$ci95,
censor = self$options$censored,
surv.median.line = self$options$medianline
)
# plot <- plot + ggtheme
print(plot)
TRUE
}
# Cumulative Events ----
# https://rpkgs.datanovia.com/survminer/survminer_cheatsheet.pdf
,
.plot2 = function(image2, ggtheme, theme, ...) {
ce <- self$options$ce
if (!ce)
return()
results <- image2$state
if (is.null(results)) {
return()
}
mytime <- results$name1time
mytime <- jmvcore::constructFormula(terms = mytime)
myoutcome <- results$name2outcome
myoutcome <-
jmvcore::constructFormula(terms = myoutcome)
myfactor <- results$name3explanatory
myfactor <-
jmvcore::constructFormula(terms = myfactor)
plotData <- results$cleanData
plotData[[mytime]] <-
jmvcore::toNumeric(plotData[[mytime]])
myformula <-
paste("survival::Surv(", mytime, ",", myoutcome, ")")
title2 <- as.character(myfactor)
plot2 <- plotData %>%
finalfit::surv_plot(
.data = .,
dependent = myformula,
explanatory = myfactor,
xlab = paste0('Time (', self$options$timetypeoutput, ')'),
pval = self$options$pplot,
pval.method = self$options$pplot,
legend = 'none',
break.time.by = self$options$byplot,
xlim = c(0, self$options$endplot),
ylim = c(
self$options$ybegin_plot,
self$options$yend_plot),
title = paste0("Cumulative Events ", title2),
fun = "event",
risk.table = self$options$risktable,
conf.int = self$options$ci95,
censor = self$options$censored,
surv.median.line = self$options$medianline
)
print(plot2)
TRUE
}
# Cumulative Hazard ----
,
.plot3 = function(image3, ggtheme, theme, ...) {
ch <- self$options$ch
if (!ch)
return()
results <- image3$state
if (is.null(results)) {
return()
}
mytime <- results$name1time
mytime <- jmvcore::constructFormula(terms = mytime)
myoutcome <- results$name2outcome
myoutcome <-
jmvcore::constructFormula(terms = myoutcome)
myfactor <- results$name3explanatory
myfactor <-
jmvcore::constructFormula(terms = myfactor)
plotData <- results$cleanData
plotData[[mytime]] <-
jmvcore::toNumeric(plotData[[mytime]])
myformula <-
paste("survival::Surv(", mytime, ",", myoutcome, ")")
title2 <- as.character(myfactor)
plot3 <- plotData %>%
finalfit::surv_plot(
.data = .,
dependent = myformula,
explanatory = myfactor,
xlab = paste0('Time (', self$options$timetypeoutput, ')'),
pval = self$options$pplot,
pval.method = self$options$pplot,
legend = 'none',
break.time.by = self$options$byplot,
xlim = c(0, self$options$endplot),
ylim = c(
self$options$ybegin_plot,
self$options$yend_plot),
title = paste0("Cumulative Hazard ", title2),
fun = "cumhaz",
risk.table = self$options$risktable,
conf.int = self$options$ci95,
censor = self$options$censored,
surv.median.line = self$options$medianline
)
print(plot3)
TRUE
}
# KMunicate Style ----
,
.plot6 = function(image6, ggtheme, theme, ...) {
kmunicate <- self$options$kmunicate
if (!kmunicate)
return()
results <- image6$state
if (is.null(results)) {
return()
}
mytime <- results$name1time
mytime <- jmvcore::constructFormula(terms = mytime)
myoutcome <- results$name2outcome
myoutcome <-
jmvcore::constructFormula(terms = myoutcome)
myfactor <- results$name3explanatory
myfactor <-
jmvcore::constructFormula(terms = myfactor)
plotData <- results$cleanData
plotData[[mytime]] <-
jmvcore::toNumeric(plotData[[mytime]])
title2 <- as.character(myfactor)
myformula <-
paste('survival::Surv(',
mytime,
',',
myoutcome,
') ~ ',
myfactor)
myformula <- as.formula(myformula)
km_fit <-
survival::survfit(myformula, data = plotData)
time_scale <-
seq(0, self$options$endplot, by = self$options$byplot)
plot6 <-
KMunicate::KMunicate(
fit = km_fit,
time_scale = time_scale,
.xlab = paste0('Time in ', self$options$timetypeoutput)
)
print(plot6)
TRUE
}
# cox.zph ----
,
.plot8 = function(image8, ggtheme, theme, ...) {
ph_cox <- self$options$ph_cox
if (!ph_cox)
return()
zph <- image8$state
if (is.null(zph)) {
return()
}
plot8 <- plot(zph)
print(plot8)
TRUE
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.