#' scrapeTags()
#' a) reads a file with NovNet-style tags
#' b) scrapes the alternate names
#' c) writing to a Char.csv file
#' d) It will also repopulate the -scrapeTags.csv with metadata from
#' an associated Char.csv file, if one exists.
#'
#' description
#'
#' @param filename Character string of text name, with associated -tagNames file.
#' @param local Logical vector. If FALSE (default), looks in Google Drive for files. If TRUE, looks for filename in a folder with path data/filename/.
#' @param include.all Logical vector or numerical range. If TRUE (default), processes whole text. If range (i.e. 1:18), processes only those chapters. If FALSE, will offer a prompt to determine a range.
#'
#' @keywords NovNet Utilities PhaseII
#'
#' @import googledrive
#'
#' @export
#'
#'
### scrapeTags() ----
scrapeTags <- function(filename,
local = FALSE,
include.all = TRUE){
## a)
# pull -tagNames.txt file
file.v <- paste0(filename, "-tagNames.txt")
if(!dir.exists(paste0("data/", filename))){
dir.create(paste0("data/", filename))
}
file.path.v <- paste0("data/", filename, "/", file.v)
if(local == FALSE){
cat("Downloading .txt file from Google Drive.\n")
drive_download(file.v, overwrite = TRUE, path = file.path.v)
}
input.text.v <- scan(file = file.path.v,
what="character",
sep="\n",
blank.lines.skip = FALSE)
## b) locates the body of the text (and stores the paratext)
start.v <- which(input.text.v == "====START====")
end.v <- which(input.text.v == "====END====")
frontmatter.v <- input.text.v[1:start.v]
backmatter.v <- input.text.v[end.v:(length(input.text.v))]
main.text.v <- input.text.v[(start.v+1):(end.v-1)]
## c) does some very light (reversible) text prep -- including storing paragraph breaks
text.s <- paste(main.text.v, collapse = "\n") # collapses to a single string, stores para breaks
## d) pull *Char.csv spreadsheet of name alternates
if(local == FALSE){
cat("Downloading character data from Google Drive.\n")
drive_download(file = paste0(filename, "Char.csv"),
overwrite = TRUE,
type = "csv",
path = paste0("data/", filename, "/", filename, "Char.csv"))
}
# Determine .csv Version #
char.data.version <- read.csv(file = paste0("data/", filename, "/", filename, "Char.csv"),
header = FALSE, sep = ",",
skip = 0,
stringsAsFactors = FALSE,
blank.lines.skip = FALSE)[7, 2]
if(char.data.version != "2"){
char.data.df <- read.csv(file = paste0("data/", filename, "/", filename, "Char.csv"),
header = TRUE, sep = ",",
skip = 7, row.names = 1,
stringsAsFactors = FALSE,
blank.lines.skip = TRUE)
char.data.df[is.na(char.data.df)] <- "" # removes NA from completely blank columns
if(ncol(char.data.df) > 9){
char.names.df <- char.data.df[, c(1:6, 10:ncol(char.data.df))]
} else {
char.names.df <- char.data.df[, 1:6]
}
}
if(char.data.version == "2"){
char.data.df <- read.csv(file = paste0("data/", filename, "/", filename, "Char.csv"),
header = FALSE, sep = ",",
skip = 0,
stringsAsFactors = FALSE,
blank.lines.skip = TRUE)
char.data.df[is.na(char.data.df)] <- "" # removes NA from completely blank columns
charname.col.v <- which(char.data.df[10, ] == "CharName")
char.names.df <- char.data.df[11:nrow(char.data.df),
charname.col.v:ncol(char.data.df)]
row.names(char.names.df) <- char.data.df[11:nrow(char.data.df), 1]
}
## e) locate tags in text.s and scrape, saving to scraped.pair.df:
##
## alt uniq
## [1,]
## [2,]
# scrape tags
scraped.tags.v <- unlist(regmatches(text.s, gregexpr("<.+?/>", text.s)))
# check tag format
tag.check.v <- grep("< .+ u: .+ />", scraped.tags.v, value = TRUE)
problem.tags.v <- setdiff(scraped.tags.v, tag.check.v)
# remove malformed tags
scraped.tags.v <- tag.check.v
# report malformed tags
if(length(problem.tags.v) >= 1){
cat(paste0(length(problem.tags.v), " malformed tags found and not collated:\n"))
for(i in 1:length(problem.tags.v)){
cat(problem.tags.v[i])
cat("\n")
}
} else {
cat("No malformed tags found.\n")
}
# split tags
alt.as.found <- gsub("< (.+) u: (.+) />", "\\1", scraped.tags.v)
uniq.as.found <- gsub("< (.+) u: (.+) />", "\\2", scraped.tags.v)
# combine in data.frame
scraped.pair.df <- data.frame(alt = alt.as.found,
uniq = uniq.as.found,
stringsAsFactors = FALSE)
## f) stash scraped.pair.df$alt.as.found in list, organized by scraped.pair.df$uniq.as.found
# create vector of uniqnames, and compare to Char.csv rownames
unique.uniq.as.found <- unique(scraped.pair.df$uniq)
# transform vector of compiled uniqnames to list, and stash associated alternates
found.names.l <- as.list(rep(NA, length(unique.uniq.as.found)))
names(found.names.l) <- unique.uniq.as.found
for(i in 1:length(found.names.l)){
temp.uniq.v <- unique.uniq.as.found[i]
assoc.alt.names.v <- scraped.pair.df[which(scraped.pair.df$uniq == temp.uniq.v), 1]
found.names.l[[i]] <- unique(assoc.alt.names.v)
}
## f) compare compiled alt names with Char.csv, and add where necessary
# pull uniqnames from char.names.df, and generate list of collated alternates
char.csv.uniq <- rownames(char.names.df)
new.uniq.v <- unique.uniq.as.found[!unique.uniq.as.found %in% char.csv.uniq]
######## ANNOUNCE NEW UNIQUE NAMES ########
if(length(new.uniq.v >= 1)){
cat("New uniqnames found:\n", paste0(new.uniq.v, "\n"), "\n")
}
uniq.v <- c(char.csv.uniq, new.uniq.v)
char.names.l <- as.list(rep("", length(uniq.v)))
names(char.names.l) <- uniq.v
for(i in 1:nrow(char.names.df)){
temp.uniq.v <- uniq.v[i]
alts.from.csv <- as.character(char.names.df[temp.uniq.v, ])
alts.from.csv <- alts.from.csv[which(alts.from.csv != "")]
char.names.l[[temp.uniq.v]] <- alts.from.csv
}
# now compare with found names, and add to char.names.l if necessary
new.alt.found <- list()
for(i in 1:length(char.names.l)){
temp.uniq.v <- names(char.names.l)[i]
new.alt.names.byuniq.v <- found.names.l[[temp.uniq.v]][!found.names.l[[temp.uniq.v]]
%in% char.names.l[[temp.uniq.v]]]
char.names.l[[i]] <- c(char.names.l[[i]], new.alt.names.byuniq.v)
if(length(new.alt.names.byuniq.v) >= 1){
new.alt.found[[temp.uniq.v]] <- new.alt.names.byuniq.v
}
}
if(length(new.alt.found) >= 1){
cat(paste0(sum(sapply(new.alt.found, length)), " new alternate names found.\n"))
for(i in 1:length(new.alt.found)){
cat(paste("uniqname", names(new.alt.found)[i], "now associated with:", new.alt.found[[i]], "\n"))
}
}
## g) prepare out.df, in format Char.csv
nrow.out.df.v <- length(char.names.l) # 10 lines metadata plus number of characters
ncol.out.df.v <- 5+max(sapply(char.names.l, length))
out.m <- matrix("",
ncol = ncol.out.df.v,
nrow = nrow.out.df.v)
out.df <- as.data.frame(out.m, stringsAsFactors = FALSE)
out.df[1:10, 1:11] <- char.data.df[1:10, 1:11]
# transfer char.names.l to out.df[11:nrow, ]
for(i in 1:length(char.names.l)){
uniq.temp.v <- names(char.names.l)[i]
alts.temp.v <- char.names.l[[uniq.temp.v]]
if(!uniq.temp.v %in% new.uniq.v){
char.meta.v <- as.character(char.data.df[which(char.data.df[, 1] == uniq.temp.v), 2:5])
} else {
char.meta.v <- rep("", 4)
}
temp.row.v <- c(uniq.temp.v, char.meta.v, alts.temp.v)
out.df[10+i, 1:(5+length(alts.temp.v))] <- temp.row.v
}
# add compiler tag
out.df[7, 4] <- paste0("This Char.csv file was prepared with scrapeTag() on ", date())
## h) write out .csv
write.table(out.df, # note: write.csv is inflexible on column names
sep = ",",
file = paste0("data/", filename, "/", filename, "Char-scrapeTag.csv"),
row.names = FALSE,
col.names = FALSE)
cat("file saved as:", paste0("data/", filename, "/", filename, "Char-scrapeTag.csv\n"))
## h) glues the text file back together
#text.s <- gsub("\n", "\n\n", text.s)
main.out.v <- unlist(strsplit(text.s, "\n"))
#main.out.v <- gsub("^ | $", "", main.out.v)
text.out.v <- c(frontmatter.v, main.out.v, backmatter.v)
# pull preparer name from .csv file
preparer.v <- read.csv(file = paste0("data/", filename, "/", filename, "Char.csv"),
header = FALSE, sep = ",",
stringsAsFactors = FALSE,
blank.lines.skip = TRUE)[5, 2]
cat("Generating header.\n")
out.header.v <- c("BEGIN HEADER:",
"",
paste("Source txt file: ", filename, ".txt", sep = ""),
paste("Source csv file: ", filename, "Char.csv", sep = ""),
paste("Source Compiled by: ", preparer.v, sep = ""),
paste("This text date: ", date(), sep = ""),
"",
"This text compiled by function tagNames(), part of the
novel-networks package for R.",
"",
"NOTE: tagNames() will not flag names that end in
punctuation marks, such as Lord A. or Mrs. B---",
"",
"BEGIN TEXT:",
""
)
out.v <- c(out.header.v, text.out.v)
## j) saves as a .txt file
write(out.v, file = paste0("data/", filename, "/", filename, "-scrapeTags.txt")) # save file
cat("File saved as", paste0(getwd(), "/data/", filename, "/", filename, "-scrapeTags.txt", "\n"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.