#' Sparse Group Lasso Optimization
#' @useDynLib smm linNest
#' @keywords internal
#' @export
oneDim <-
function(data, index, thresh = 0.0001,
nlam = 20, lambdas = NULL,
beta.naught = rep(0,ncol(data$x)),
inner.iter = 100, outer.iter = 100,
outer.thresh = 0.0001, gamma = 0.8, step = 1, reset = 10,
alpha = 0.95, min.frac = 0.05, verbose = FALSE){
if(is.null(lambdas)){
lambdas <- betterPathCalc(data = data, index = index, alpha=alpha, min.frac = min.frac, nlam = nlam, type = "linear")
}
X <- data$x
y <- data$y
n <- nrow(X)
p <- ncol(X)
## Setting up group lasso stuff ##
ord <- order(index)
index <- index[ord]
X <- X[,ord]
unOrd <- match(1:length(ord),ord)
## Coming up with other C++ info ##
groups <- unique(index)
num.groups <- length(groups)
range.group.ind <- rep(0,(num.groups+1))
for(i in 1:num.groups){
range.group.ind[i] <- min(which(index == groups[i])) - 1
}
range.group.ind[num.groups+1] <- ncol(X)
group.length <- diff(range.group.ind)
## DONE SETTING UP C STUFF ##
#alpha <- sqrt(2*log(p))/(1+sqrt(2*log(num.groups)/min(group.length)) + sqrt(2*log(p)))
nlam = length(lambdas)
beta.old <- rep(0,ncol(X))
beta.is.zero <- rep(1,num.groups)
beta <- array(0, c(ncol(X),nlam))
eta <- rep(0,n)
for(k in 1:nlam){
beta.is.zero <- c(0,rep(1, num.groups-1))
## first elements has to be not penalized
beta.old <- rep(0, ncol(X))
eta <- rep(0,n)
junk <- .C("linNest", X = as.double(as.vector(X)), y = as.double(y),
index = as.integer(index),
nrow = as.integer(nrow(X)),
ncol = as.integer(ncol(X)),
numGroup = as.integer(num.groups),
rangeGroupInd = as.integer(range.group.ind),
groupLen = as.integer(group.length),
lambda1 = as.double(lambdas[k]*alpha),
lambda2 = as.double(lambdas[k]*(1-alpha)),
beta = as.double(beta.old),
innerIter = as.integer(inner.iter),
outerIter = as.integer(outer.iter),
thresh = as.double(thresh),
outerThresh = as.double(outer.thresh),
eta = as.double(eta),
gamma = as.double(gamma),
betaIsZero = as.integer(beta.is.zero),
step = as.double(step),
reset = as.integer(reset))
beta.new <- junk$beta
beta[,k] <- beta.new
beta.is.zero <- junk$betaIsZero
eta <- junk$eta
beta.old <- beta.new
if(verbose == TRUE){
write(paste("***Lambda", k, "***"),"")
}
}
return(list(beta = beta[unOrd,], lambdas = lambdas))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.