R/multAdjust.R

Defines functions multAdjust

Documented in multAdjust

#' Multiple testing adjustment
#'
#' The functions adjusts a vector of p-values for multiple testing
#'
#' @param pvals numeric vector with p-values
#' @param adjust character specifying the method used for adjustment.
#'   Can be \code{"lfdr"}, \code{"adaptBH"}, or one of the methods provided by
#'   \code{\link[stats]{p.adjust}}.
#' @param trueNullMethod character indicating the method used for estimating the
#'   proportion of true null hypotheses from a vector of p-values. Used for the
#'   adaptive Benjamini-Hochberg method for multiple testing adjustment (chosen
#'   by \code{adjust = "adaptBH"}). Accepts the provided options of the
#'   \code{method} argument of \code{\link[limma]{propTrueNull}}:
#'   \code{"convest"}(default), \code{"lfdr"}, \code{"mean"}, and \code{"hist"}.
#'   Can alternatively be \code{"farco"} for
#'   the "iterative plug-in method" proposed by \cite{Farcomeni (2007)}.
#' @param pTrueNull proportion of true null hypothesis used for the adaptBH 
#'   method. If \code{NULL}, the proportion is computed using the method 
#'   defined via \code{trueNullMethod}.
#' @param verbose if \code{TRUE}, progress messages are returned.
#'
#' @references
#'   \insertRef{farcomeni2007some}{NetCoMi}
#'
#' @importFrom fdrtool fdrtool
#' @importFrom stats p.adjust
#' @export

multAdjust <- function(pvals, 
                       adjust = "adaptBH", 
                       trueNullMethod = "convest", 
                       pTrueNull = NULL, 
                       verbose = FALSE) {
  
  # Check input arguments
  
  if (!is.numeric(pvals)) {
    stop('Argument "pvals" must be a numeric vector.')
  }
  
  adjust <- match.arg(adjust, c(p.adjust.methods, "lfdr", "adaptBH"))
  
  trueNullMethod <- match.arg(trueNullMethod, c("farco", "lfdr", "mean",
                                                "hist", "convest"))
  
  if (!is.logical(verbose)) {
    stop('Argument "verbose" must be logical.')
  }
  
  #-----------------------------------------------------------------------------
  
  if (adjust == "lfdr") {
    
    if (verbose) {
      message("")
      message("Execute fdrtool() ...")
    }
    
    pAdjust <- fdrtool::fdrtool(pvals, statistic = "pvalue", plot = FALSE,
                                verbose = verbose)$lfdr
    names(pAdjust) <- names(pvals)
    
  } else if (adjust == "adaptBH") {
    
    m <- length(pvals)
    ind <- m:1
    o <- order(pvals, decreasing = TRUE)
    ro <- order(o)
    
    if (is.null(pTrueNull)) {
      if (trueNullMethod == "farco") {
        R <- 0
        iter <- TRUE
        
        while(iter) {
          pTrueNull <- 1- (R/m)  # proportion of true null hypotheses
          pAdjust <- pmin(1, cummin(m * pTrueNull / ind * pvals[o]))[ro]
          R_new <- length(which(pAdjust < 0.05))
          iter <- R_new != R  # stop iteration if R_new==R
          R <- R_new
        }
        
        if (verbose) {
          message("\n Proportion of true null hypotheses: ", round(pTrueNull, 2))
        }
        
      } else {
        # trueNullMethod must be one of "lfdr", "mean", "hist", or "convest"
        pTrueNull <- limma::propTrueNull(pvals, method = trueNullMethod)
        if (verbose) {
          message("\n Proportion of true null hypotheses: ", round(pTrueNull, 2))
        }
      }
    }

    pAdjust <- pmin(1, cummin(m * pTrueNull / ind * pvals[o]))[ro]
    
    names(pAdjust) <- names(pvals)
    
  } else {
    pAdjust <- stats::p.adjust(pvals, adjust)
  }
  
  return(pAdjust)
}
stefpeschel/NetCoMi documentation built on Nov. 12, 2024, 7:12 a.m.