knitr::opts_chunk$set(echo = TRUE)
The objective of this vignette is to test different multiple testing methods in the context of Gene Set Enrichment Analysis (GSEA). To do this, we use data from the paper by Cabezas-Wallscheid et al. (Cell stem Cell, 2014). The data consist of RNA-seq data from mouse hematopoietic stem cells and multipotent progenitor lineages. The raw fastq data is available through the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-2262. These data were mapped to the mouse reference genome GRCm38 (ENSEMBL release 69) using the Genomic Short-Read Nucleotide Alignment program (version 2012-07-20). We used htseq-count to count the number of reads overlapping with each gene and used the DESeq2 package to format the data as a DESeqDataSet R object.
Here we use the fgsea
Bioconductor package to implement the GSEA method. This is
a Functional Class Scoring approach, which does not require setting an arbitrary threshold for Differential Expression, but instead relies on the gene's rank (here we rank by DESeq2 test statistic).
library(dplyr) library(ggplot2) library(scales) library(DESeq2) library(EnsDb.Mmusculus.v75) library(fgsea) ## load helper functions for (f in list.files("../R", "\\.(r|R)$", full.names = TRUE)) { source(f) } ## project data/results folders datdir <- "data" resdir <- "results" sbdir <- "../../results/GSEA" dir.create(datdir, showWarnings = FALSE) dir.create(resdir, showWarnings = FALSE) dir.create(sbdir, showWarnings = FALSE) ## intermediary files we create below count_file <- file.path(datdir, "mouse-counts.rds") deseq_file <- file.path(datdir, "mouse-deseq.rds") goset_file <- file.path(datdir, "mouse-gosets.rds") result_file <- file.path(resdir, "mouse-results.rds") bench_file <- file.path(sbdir, "mouse-benchmark.rds") bench_file_uninf <- file.path(sbdir, "mouse-uninf-benchmark.rds")
The data has been preprocessed and saved as a DESeqDataset object. The following lines of code download this DESeqDataSet if it is not present locally.
if (!file.exists(count_file)) { download.file("https://zenodo.org/record/1475409/files/gsea-mouse-counts.rds?download=1", destfile = count_file) } dseHSCMPP <- readRDS(count_file)
In order to rank the list of genes for GSEA, we will test each gene for differential gene expression between hematopoietic stem cells and multipotent progenitors (fraction 1). To do this, we will run DESeq2 to obtain a statistic for differential expression.
if (!file.exists(deseq_file)) { dseHSCMPP <- DESeq(dseHSCMPP) res <- results(dseHSCMPP, contrast = c("conditions", "HSC", "MPP1"), independentFiltering = FALSE) saveRDS(res, file = deseq_file) } else { res <- readRDS(deseq_file) } genes <- as.numeric(res$padj < 0.1) names(genes) <- rownames(res) sum(genes, na.rm=TRUE)
We next use biomaRt to get the relations between GO categories and genes.
if (!file.exists(goset_file)) { library(biomaRt) mart <- useMart("ensembl", "mmusculus_gene_ensembl") goSets <- getBM(c("ensembl_gene_id", "go_id"), mart = mart, filters = "ensembl_gene_id", values = rownames(res)) goSets <- goSets[!nchar(goSets$go_id) == 0, ] goSets <- with(goSets, split(go_id, ensembl_gene_id)) saveRDS(goSets, file = goset_file) } else { goSets <- readRDS(goset_file) }
Now we use the fgsea
package to perform the gene set enrichment analysis and
obtain a enrichment p-value for each pathway.
# invert the list so each item is a pathway instead of a gene goSets <- split(rep(names(goSets), lengths(goSets)), unlist(goSets)) stats <- res$stat names(stats) <- rownames(res) stats <- stats[!is.na(stats)] if (!file.exists(result_file)) { goRes <- fgsea(goSets, stats, nperm=10000, maxSize=500, minSize=5) saveRDS(goRes, file = result_file) } else { goRes <- readRDS(result_file) }
Add a random (uninformative covariate) to the dataset.
## Add random (uninformative) covariate set.seed(7476) goRes$rand_covar <- rnorm(nrow(goRes))
Here, we want to check whether the size of the gene set is actually informative and independent under the null.
In the following plot, we explore the relationship between the p-value and the gene set size. We can see that this covariate is actually informative.
rank_scatter(dat = goRes, pval = "pval", covariate = "size", bins = 50, funx = log2, funfill = log10_trans()) + ggtitle("Enriched gene sets") + xlab(expression(log[10]~"(# of genes)")) + ylab(expression(-log[10]~"(p-value)"))
And at the same time, it seems to be fair to assume that it is independent under the null hypothesis.
strat_hist(goRes, pval = "pval", covariate = "size", maxy=12)
We will explore whether the random covariate can be used as a covariate for modern multiple-testing correction methods in the context of GSEA. In the plot below, the log10 of the p-values is plotted as a function of the random covariate. This covariate looks independent of the p-values.
rank_scatter(dat = goRes, pval = "pval", covariate = "rand_covar", bins = 50, funfill = log10_trans()) + ggtitle("Enriched gene sets") + ylab(expression(-log[10]~"(p-value)") )
We can also explore if the covariate seems to be independent under the null.
strat_hist(goRes, pval="pval", covariate="rand_covar", maxy=10)
Generating the SummarizedBenchmark object:
## rename columns and prepare for benchmarking res <- dplyr::select(goRes, pval, size, rand_covar) %>% dplyr::rename(pval = pval, ind_covariate = size) ## generate default BenchDesign bd <- initializeBenchDesign()
We don't include ashq
, fdrreg-e
and fdrreg-t
from the analysis because
the necessary assumptions are not met in the current case study. Namely, effect sizes
and standard errors are not available for ASH, and the test statistics are not normally
distributed under the null and alternative, as required by Scott's FDR regression methods.
if (!file.exists(bench_file)) { sGSEAMouse <- buildBench(bd, res, ftCols = "ind_covariate") saveRDS(sGSEAMouse, file = bench_file) } else { sGSEAMouse <- readRDS(bench_file) }
We'll also compare the results to an uninformative (random) covariate.
if (!file.exists(bench_file_uninf)) { res$ind_covariate <- res$rand_covar sGSEAMouse_rand <- buildBench(bd, res, ftCols = "ind_covariate") saveRDS(sGSEAMouse_rand, file = bench_file_uninf) } else { sGSEAMouse_rand <- readRDS(bench_file_uninf) }
assayNames(sGSEAMouse) <- "qvalue" sGSEAMouse <- addDefaultMetrics(sGSEAMouse)
rejections_scatter(sGSEAMouse, as_fraction = FALSE, supplementary = FALSE)
plotFDRMethodsOverlap(sGSEAMouse, alpha = 0.1, supplementary = FALSE, order.by = "freq", nsets = 100)
covariateLinePlot(sGSEAMouse, alpha = 0.1, covname = "ind_covariate", trans="log1p")
assayNames(sGSEAMouse_rand) <- "qvalue" sGSEAMouse_rand <- addDefaultMetrics(sGSEAMouse_rand) sGSEAMouse_rand <- estimatePerformanceMetrics(sGSEAMouse_rand, addColData=TRUE)
rejections_scatter(sGSEAMouse_rand, as_fraction=FALSE, supplementary=FALSE)
plotFDRMethodsOverlap(sGSEAMouse_rand, alpha=0.1, supplementary=FALSE, order.by="freq", nsets=100)
covariateLinePlot(sGSEAMouse_rand, alpha = 0.1, covname = "ind_covariate", trans = "log1p")
Here we compare the method ranks for the two covariates at alpha = 0.10.
plotMethodRanks(c(bench_file, bench_file_uninf), colLabels = c("Set Size", "Random"), alpha = 0.10, xlab = "Covariate", excludeMethods = NULL)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.