predict.pls.cox=
function (object, newdata, scale.X = TRUE, scale.Y = TRUE, ...)
{
if (missing(newdata))
stop("No new data available.")
X = object$X
Y = object$Y
q = ncol(Y)
p = ncol(X)
if (length(dim(newdata)) == 2) {
if (ncol(newdata) != p)
stop("'newdata' must be a numeric matrix with ncol = ",
p, " or a vector of length = ", p, ".")
}
if (length(dim(newdata)) == 0) {
if (length(newdata) != p)
stop("'newdata' must be a numeric matrix with ncol = ",
p, " or a vector of length = ", p, ".")
dim(newdata) = c(1, p)
}
ncomp = object$ncomp
a = object$loadings$X
b = object$loadings$Y
c = object$mat.c
if (scale.X) {
means.X = attr(X, "scaled:center")
}
if (scale.Y) {
means.Y = attr(Y, "scaled:center")
}
if (scale.X) {
sigma.X = attr(X, "scaled:scale")
}
if (scale.Y) {
sigma.Y = attr(Y, "scaled:scale")
}
newdata = as.matrix(newdata)
ones = matrix(rep(1, nrow(newdata)), ncol = 1)
B.hat = array(0, dim = c(p, q, ncomp))
Y.hat = array(0, dim = c(nrow(newdata), q, ncomp))
t.pred = array(0, dim = c(nrow(newdata), ncomp))
for (h in 1:ncomp) {
W = a[, 1:h] %*% solve(t(c[, 1:h]) %*% a[, 1:h])
B = W %*% drop(t(b[, 1:h]))
if (scale.Y) {
B = scale(B, center = FALSE, scale = 1/sigma.Y)
}
if (scale.X) {
B = as.matrix(scale(t(B), center = FALSE, scale = sigma.X))
}
if (!scale.X) {
B = as.matrix(t(B))
}
if (scale.X & scale.Y) {
intercept = -scale(B, center = FALSE, scale = 1/means.X)
intercept = matrix(apply(intercept, 1, sum) + means.Y,
nrow = 1)
Y.hat[, , h] = newdata %*% t(B) + ones %*% intercept
}
if (scale.X & !scale.Y) {
intercept = -scale(B, center = FALSE, scale = 1/means.X)
intercept = matrix(apply(intercept, 1, sum), nrow = 1)
Y.hat[, , h] = newdata %*% t(B) + ones %*% intercept
}
if (!scale.X & scale.Y) {
intercept = -B
intercept = matrix(apply(intercept, 1, sum) + means.Y,
nrow = 1)
Y.hat[, , h] = newdata %*% t(B) + ones %*% intercept
}
if (!scale.X & !scale.Y) {
Y.hat[, , h] = newdata %*% t(B)
}
if (!scale.X) {
t.pred[, h] = newdata %*% W[, h]
}
if (scale.X) {
t.pred[, h] = scale(newdata, center = means.X, scale = sigma.X) %*%
W[, h]
}
B.hat[, , h] = B
}
rownames(t.pred) = rownames(newdata)
colnames(t.pred) = paste("dim", c(1:ncomp), sep = " ")
rownames(Y.hat) = rownames(newdata)
colnames(Y.hat) = colnames(Y)
return(invisible(list(predict = Y.hat, variates = t.pred, w=W,
B.hat = B.hat)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.