# RESAMPLE
#' @include AllGenerics.R
NULL
# Bootstrap ====================================================================
#' @export
#' @rdname bootstrap
#' @aliases bootstrap,DiversityIndex-method
setMethod(
f = "bootstrap",
signature = c(object = "DiversityIndex"),
definition = function(object, n = 1000, f = NULL, level = 0.95,
interval = c("basic", "normal", "percentiles"),
seed = NULL, rare = FALSE) {
## Validation
interval <- match.arg(interval, several.ok = FALSE)
## Seed
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
stats::runif(1)
if (is.null(seed)) {
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
} else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
w <- object@data
m <- nrow(w)
method <- object@method
fun_index <- function(x) {
do_index(x, method = method, evenness = is_evenness(object))
}
if (isTRUE(rare)) {
fun_resample <- function(x, n) arkhe::resample_uniform(x, n, replace = TRUE)
} else {
fun_resample <- function(x, n) arkhe::resample_multinomial(x, n)
}
results <- vector(mode = "list", length = m)
for (i in seq_len(m)) {
hat <- fun_index(w[i, ])
spl <- t(fun_resample(w[i, ], n = n))
res <- apply(X = spl, MARGIN = 2, FUN = fun_index)
if (is.function(f)) {
results[[i]] <- f(res)
} else {
results[[i]] <- summary_bootstrap(res, hat, level = level, interval = interval)
}
}
results <- do.call(rbind, results)
rownames(results) <- rownames(w)
results <- as.data.frame(results)
attr(results, "seed") <- RNGstate
results
}
)
summary_bootstrap <- function(x, hat, level = 0.95, interval = "basic") {
n <- length(x)
boot_mean <- mean(x)
boot_bias <- boot_mean - hat
boot_error <- stats::sd(x)
ci <- arkhe::confidence_bootstrap(x, level = level, t0 = hat, type = interval)
results <- c(hat, boot_mean, boot_bias, boot_error, ci)
names(results) <- c("original", "mean", "bias", "error", "lower", "upper")
results
}
# Jackknife ====================================================================
#' @export
#' @rdname jackknife
#' @aliases jackknife,DiversityIndex-method
setMethod(
f = "jackknife",
signature = c(object = "DiversityIndex"),
definition = function(object, f = NULL) {
w <- object@data
m <- nrow(w)
method <- object@method
results <- vector(mode = "list", length = m)
for (i in seq_len(m)) {
results[[i]] <- arkhe::jackknife(
object = w[i, ],
do = do_index,
method = method,
evenness = methods::is(object, "EvennessIndex"),
f = f
)
}
results <- do.call(rbind, results)
rownames(results) <- rownames(w)
as.data.frame(results)
}
)
# Simulate =====================================================================
#' @export
#' @method simulate DiversityIndex
simulate.DiversityIndex <- function(object, nsim = 1000, seed = NULL, step = 1,
level = 0.80, interval = "percentiles",
progress = getOption("tabula.progress"), ...) {
## Validation
interval <- match.arg(interval, several.ok = FALSE)
## Seed
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
stats::runif(1)
if (is.null(seed)) {
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
} else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
## Specify the probability for the classes
data <- object@data
## Select method
method <- object@method
## Sample size
size <- max(rowSums(data))
sample_sizes <- seq(from = 1, to = size * 1.05, by = step)
m <- length(sample_sizes)
k <- seq_len(m)
results <- vector(mode = "list", length = m)
fun_index <- function(x) {
do_index(x, method = method, evenness = is_evenness(object))
}
progress_bar <- interactive() && progress
if (progress_bar) pbar <- utils::txtProgressBar(max = m, style = 3)
for (i in k) {
spl <- arkhe::resample_multinomial(colSums(data), n = nsim, size = sample_sizes[[i]])
res <- apply(X = t(spl), MARGIN = 2, FUN = fun_index)
int <- conf(res, level = level, type = interval)
results[[i]] <- c(mean = mean(res), int)
if (progress_bar) utils::setTxtProgressBar(pbar, i)
}
if (progress_bar) close(pbar)
results <- do.call(rbind, results)
results <- cbind(size = sample_sizes, results)
methods::initialize(object, simulation = results, seed = RNGstate)
}
#' @export
#' @rdname simulate
#' @aliases simulate,DiversityIndex-method
setMethod("simulate", c(object = "DiversityIndex"), simulate.DiversityIndex)
conf <- function(x, level = 0.80, type = c("percentiles")) {
if (type == "percentiles") {
## Confidence interval as described in Kintigh 1989
k <- (1 - level) / 2
conf <- stats::quantile(x, probs = c(k, 1 - k), names = FALSE)
}
names(conf) <- c("lower", "upper")
conf
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.