R/anansiCorTestByGroup.R

Defines functions anansiCor anansiCorPvalue anansiCorTestByGroup call_groupwise

Documented in anansiCor anansiCorPvalue anansiCorTestByGroup

#' Manages group-wise association calls
#' @description If the `groups` argument is suitable, will also run correlation
#'     analysis per group. Typically, the main `anansi()` function will run
#'     this for you.
#' @param web An `AnansiWeb` object, containing two tables with omics data and a
#'      dictionary that links them. See `weaveWebFromTables()` for how to weave
#'      a web.
#' @param groups A categorical or continuous value necessary for differential
#'     correlations. Typically a state or treatment score.
#' @param metadata A vector or data.frame of categorical or continuous value
#'     necessary for differential correlations. Typically a state or treatment
#'     score.
#' @param verbose A boolean. Toggles whether to print diagnostic information
#'     while running. Useful for debugging errors on large datasets.
#' @noRd
#'
call_groupwise <- function(web, groups, metadata, verbose) {
    if (is.null(groups)) {
        group.vec <- NULL
    } else {
        group.vec <-
            apply(metadata[, groups, drop = FALSE], 1, paste, collapse = "_")
    }
    return(
        anansiCorTestByGroup(web, group.vec, verbose)
    )
}

#' Run correlations for all interacting metabolites and functions.
#' @description If the `groups` argument is suitable, will also run correlation
#'     analysis per group. Typically, the main `anansi()` function will run this
#'     for you.
#' @param web An `AnansiWeb` object, containing two tables with omics data and a
#'     dictionary that links them. See `weaveWebFromTables()` for how to weave a
#'     web.
#' @param group.vec A character vector denoting group membership. Typically a
#'     state or treatment score.
#' @param verbose A boolean. Toggles whether to print diagnostic information
#'     while running. Useful for debugging errors on large datasets.
#' @return a list of `anansiTale` result objects, one for the total dataset and
#'     per group if applicable.
#' @seealso [anansi()]
#'
anansiCorTestByGroup <- function(web, group.vec, verbose = TRUE) {
    # Determine all groups
    all_groups <- unique(group.vec)

    # Generate container list of suitable length for all results
    out_list <- vector(mode = "list", length = 1 + length(all_groups))
    names(out_list) <- c("All", all_groups)

    # first run for all groups together
    out_list$All <- anansiCorPvalue(
        web,
        group.bool = rep(TRUE, NROW(web@tableY)),
        verbose
    )

    if (!is.null(all_groups)) {
        # If verbose, verbalize.
        if (verbose) {
            message(paste(
                "Running correlations for the following groups:\n",
                paste(all_groups, collapse = ", ")
            ))
        }
        for (i in seq_along(all_groups)) {
            out_by_group <- anansiCorPvalue(
                web,
                group.bool = group.vec == all_groups[i],
                verbose
            )
            out_by_group@subject <- all_groups[i]
            out_list[[i + 1]] <- out_by_group
        }
    }

    # Return results
    return(out_list)
}

#' Compute r-statistics for each featureY-featureX pair in the dictionary.
#' Typically, the main `anansi()` function will run this for you.
#' @param web An `AnansiWeb` object, containing two tables with omics data and
#'     a dictionary that links them. See `weaveWebFromTables()` for how to
#'     weave a web.
#' @param group.bool A categorical or continuous value necessary for
#'     differential correlations. Typically a state or treatment score. If no
#'     argument provided, anansi will let you know and still to regular
#'     correlations according to your dictionary.
#' @param verbose A boolean. Toggles whether to print diagnostic information
#'     while running. Useful for debugging errors on large datasets.
#' @return An `anansiTale` result object.
#' @seealso [anansi()] \cr [anansiCorTestByGroup()]
#' @importFrom stats pt
#' @importFrom methods new
#'
anansiCorPvalue <- function(web, group.bool, verbose) {
    # Compute correlation coefficients
    r <- anansiCor(web = web, group.bool = group.bool)

    # Compute p-value through t-statistic based on n and correlation coefficient
    n <- sum(group.bool)
    t <- abs((r * sqrt(n - 2)) / sqrt(1 - r^2))
    p <- 2 * (1 - pt(t, (n - 2)))

    # Collate correlation coefficients, p-values and q-values into an anansiTale
    out <- new(
        "anansiTale",
        subject = "All",
        type = "r.values",
        estimates = r,
        df = n - 2,
        t.values = t,
        p.values = p
    )
    return(out)
}

#' Compute r-statistics for each featureY-featureX pair in the dictionary.
#' Typically, the main `anansi()` function will run this for you.
#' @param web An `AnansiWeb` object, containing two tables with omics data and a
#'      dictionary that links them. See `weaveWebFromTables()` for how to weave
#'      a web.
#' @param group.bool A boolean vector used to select which samples should be
#'      included in the correlations.
#' @seealso [anansi()] \cr [anansiCorTestByGroup()]
#' @return A matrix of r-statistics.
#' @importFrom stats cor
#'
anansiCor <- function(web, group.bool) {
    # Run correlations on subsections of your data
    cors <- cor(
        x = web@tableY[group.bool, ],
        y = web@tableX[group.bool, ],
        method = "pearson",
        use = "pairwise.complete.obs"
    )
    cors[!Matrix::as.matrix(web@dictionary)] <- 0
    # set non-canonical correlations to zero using the binary adjacency matrix.
    return(cors)
}
thomazbastiaanssen/anansi documentation built on June 9, 2025, 3:59 p.m.