#' Metabolite Identification in a mass_dataset Object Using MS1 and MS2 Data
#'
#' This function identifies potential metabolites in a `mass_dataset` object by matching MS1 and MS2 data with a reference spectral database. The function uses both MS1 (m/z) and MS2 (fragment ions) matching for more accurate identification.
#'
#' @param object A `mass_dataset` object that contains MS1 and MS2 data.
#' @param ms1.match.ppm A numeric value specifying the mass accuracy threshold for MS1 matching in parts per million (ppm). Defaults to `25`.
#' @param ms2.match.ppm A numeric value specifying the mass accuracy threshold for MS2 matching in ppm. Defaults to `30`.
#' @param mz.ppm.thr A numeric value specifying the m/z threshold in ppm for matching MS1 and MS2. Defaults to `400`.
#' @param ms2.match.tol A numeric value specifying the tolerance for MS2 fragment ion matching. Defaults to `0.5`.
#' @param fraction.weight A numeric value specifying the weight for the MS2 fragmentation score. Defaults to `0.3`.
#' @param dp.forward.weight A numeric value specifying the weight for the forward dot product in MS2 matching. Defaults to `0.6`.
#' @param dp.reverse.weight A numeric value specifying the weight for the reverse dot product in MS2 matching. Defaults to `0.1`.
#' @param rt.match.tol A numeric value specifying the retention time matching tolerance in seconds. Defaults to `30`.
#' @param polarity A character string specifying the ionization mode. It can be either `"positive"` or `"negative"`. Defaults to `"positive"`.
#' @param ce A character string specifying the collision energy for MS2 matching. Defaults to `"all"`.
#' @param column A character string specifying the chromatographic column type, either `"hilic"` (hydrophilic interaction) or `"rp"` (reverse phase). Defaults to `"hilic"`.
#' @param ms1.match.weight A numeric value specifying the weight of MS1 matching in the total score calculation. Defaults to `0.25`.
#' @param rt.match.weight A numeric value specifying the weight of RT matching in the total score calculation. Defaults to `0.25`.
#' @param ms2.match.weight A numeric value specifying the weight of MS2 matching in the total score calculation. Defaults to `0.5`.
#' @param total.score.tol A numeric value specifying the threshold for the total score. Defaults to `0.5`.
#' @param candidate.num A numeric value specifying the number of top candidates to retain per feature. Defaults to `3`.
#' @param database A `databaseClass` object containing the reference spectral database for annotation.
#' @param threads An integer specifying the number of threads to use for parallel processing. Defaults to `3`.
#' @param remove_fragment_intensity_cutoff A numeric value specifying the intensity cutoff for removing fragments in MS2 matching. Defaults to `0`.
#'
#' @return A data frame containing the metabolite identification results, including m/z error, RT error, MS2 matching scores, and information about the identified compounds.
#'
#' @details
#' This function performs MS1 and MS2-based matching between the experimental data in the `mass_dataset` object and a reference spectral database. The matching process is based on mass-to-charge ratio (m/z), retention time (RT), and MS2 fragmentation patterns. The function supports both positive and negative ionization modes and can work with either HILIC or reverse-phase columns.
#'
#' The matching process can be fine-tuned by adjusting the weights of MS1, MS2, and RT matching, as well as the tolerance parameters for m/z and MS2 matching.
#'
#' @examples
#' \dontrun{
#' # Perform MS1 and MS2-based metabolite identification in a mass_dataset object
#' identification_result <- metIdentify_mass_dataset(
#' object = mass_object,
#' ms1.match.ppm = 20,
#' ms2.match.ppm = 25,
#' rt.match.tol = 20,
#' database = reference_database,
#' threads = 4
#' )
#' }
#'
#' @author Xiaotao Shen
#' \email{xiaotao.shen@@outlook.com}
#' @importFrom dplyr filter mutate select left_join bind_rows
#' @importFrom purrr map2
#' @importFrom crayon yellow green bgRed
#' @export
metIdentify_mass_dataset <-
function(object,
ms1.match.ppm = 25,
ms2.match.ppm = 30,
mz.ppm.thr = 400,
ms2.match.tol = 0.5,
fraction.weight = 0.3,
dp.forward.weight = 0.6,
dp.reverse.weight = 0.1,
rt.match.tol = 30,
polarity = c("positive", "negative"),
ce = "all",
column = c("hilic", "rp"),
ms1.match.weight = 0.25,
rt.match.weight = 0.25,
ms2.match.weight = 0.5,
total.score.tol = 0.5,
candidate.num = 3,
database,
threads = 3,
remove_fragment_intensity_cutoff = 0) {
###Check data
if (missing(database)) {
stop("No database is provided.\n")
}
##parameter specification
polarity <- match.arg(polarity)
column <- match.arg(column)
if (!is(database, "databaseClass")) {
stop("database should be databaseClass object.\n")
}
#load MS2 database
database.name = paste(database@database.info$Source,
database@database.info$Version,
sep = "_")
if (!is(database, "databaseClass")) {
stop("database must be databaseClass object\n")
}
ce.list.pos <-
unique(unlist(lapply(
database@spectra.data$Spectra.positive, names
)))
ce.list.neg <-
unique(unlist(lapply(
database@spectra.data$Spectra.negative, names
)))
ce.list <-
ifelse(polarity == "positive", ce.list.pos, ce.list.neg)
if (all(ce %in% ce.list) & ce != "all") {
stop("All ce values you set are not in database. Please check it.\n")
ce <- ce[ce %in% ce.list]
}
rm(list = c("ce.list.pos", "ce.list.neg", "ce.list"))
##ce values
if (all(ce != "all")) {
if (polarity == "positive") {
ce.list <-
unique(unlist(
lapply(database@spectra.data$Spectra.positive, function(x) {
names(x)
})
))
if (length(grep("Unknown", ce.list)) > 0) {
ce <-
unique(c(ce, grep(
pattern = "Unknown", ce.list, value = TRUE
)))
}
} else{
ce.list <-
unique(unlist(
lapply(database@spectra.data$Spectra.negative, function(x) {
names(x)
})
))
if (length(grep("Unknown", ce.list)) > 0) {
ce <-
unique(c(ce, grep(
pattern = "Unknown", ce.list, value = TRUE
)))
}
}
}
##RT in database or not
if (!database@database.info$RT) {
message(crayon::yellow(
"No RT information in database.\nThe weight of RT have been set as 0."
))
}
#------------------------------------------------------------------
##load adduct table
if (polarity == "positive" & column == "hilic") {
data("hilic.pos", envir = environment())
adduct.table <- hilic.pos
}
if (polarity == "positive" & column == "rp") {
data("rp.pos", envir = environment())
adduct.table <- rp.pos
}
if (polarity == "negative" & column == "hilic") {
data("hilic.neg", envir = environment())
adduct.table <- hilic.neg
}
if (polarity == "negative" & column == "rp") {
data("rp.neg", envir = environment())
adduct.table <- rp.neg
}
if (length(object@ms2_data) == 0) {
stop("No MS2 in you object.\n")
}
if (lapply(object@ms2_data, function(x) {
length(x@ms2_spectra)
}) %>%
unlist() %>%
sum() %>%
`==`(0)) {
stop("No MS2 in you object.\n")
}
#####annotation result for each set MS2 data
annotation_result <-
purrr::map2(.x = names(object@ms2_data), .y = object@ms2_data, function(temp_ms2_data_id, temp_ms2_data) {
message(crayon::yellow(temp_ms2_data_id, "file:"))
message(crayon::green(length(temp_ms2_data@ms2_spectra), "MS2 spectra."))
ms1.info = data.frame(
name = temp_ms2_data@ms2_spectrum_id,
mz = temp_ms2_data@ms2_mz,
rt = temp_ms2_data@ms2_rt,
file = temp_ms2_data@ms2_file,
variable_id = temp_ms2_data@variable_id
)
ms2.info = temp_ms2_data@ms2_spectra
ms2_matchresult <-
metIdentification(
ms1.info = ms1.info,
ms2.info = ms2.info,
polarity = polarity,
ce = ce,
database = database,
ms1.match.ppm = ms1.match.ppm,
ms2.match.ppm = ms2.match.ppm,
mz.ppm.thr = mz.ppm.thr,
ms2.match.tol = ms2.match.tol,
rt.match.tol = rt.match.tol,
column = column,
ms1.match.weight = ms1.match.weight,
rt.match.weight = rt.match.weight,
ms2.match.weight = ms2.match.weight,
total.score.tol = total.score.tol,
candidate.num = candidate.num,
adduct.table = adduct.table,
threads = threads,
fraction.weight = fraction.weight,
dp.forward.weight = dp.forward.weight,
dp.reverse.weight = dp.reverse.weight,
remove_fragment_intensity_cutoff = remove_fragment_intensity_cutoff
)
ms2_matchresult =
purrr::map2(
.x = names(ms2_matchresult),
.y = ms2_matchresult,
.f = function(temp_ms2_id, temp_annotation_result) {
data.frame(
ms2_files_id = temp_ms2_data_id,
ms2_spectrum_id = temp_ms2_id,
temp_annotation_result
) %>%
dplyr::left_join(ms1.info[, c("name", "variable_id")], by = c("ms2_spectrum_id" = "name")) %>%
dplyr::select(variable_id, dplyr::everything())
}
) %>%
dplyr::bind_rows()
ms2_matchresult
})
annotation_result =
annotation_result %>%
dplyr::bind_rows() %>%
as.data.frame() %>%
dplyr::mutate(Database = database.name)
message(crayon::bgRed("All done."))
return(annotation_result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.