npc_to_in <- function(xy, x=0.5, y=0.5, w=1, h=1, t=0) {
xy$translate(as_coord2d(-0.5, -0.5))$
scale(w, h)$
rotate(degrees(t))$
translate(as_coord2d(x, y))
invisible(xy)
}
radius <- function(x) max(abs(x - mean(x)))
Circle <- R6Class("circle",
public = list(c=NULL, r=NULL,
initialize = function(x=0.5, y=0.5, r=0.5) {
self$c <- as_coord2d(x = x, y = y)
self$r <- r
},
project = function(v) {
center <- v * self$c
c(center - self$r, center + self$r)
}))
Polygon <- R6Class("polygon",
public = list(vertices=NULL, edges=NULL, normals=NULL,
initialize = function(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0)) {
self$vertices <- as_coord2d(x = x, y = y)
n <- length(self$vertices)
# edges
p <- self$vertices[c(seq(2, n), 1)]
self$edges <- LineSegment$new(self$vertices, p)
self$normals <- self$edges$orthogonal
},
plot = function(gp = gpar()) {
grid.polygon(x=self$x, y=self$y, default.units="in", gp = gp)
},
project = function(v) {
projections <- v * self$vertices
range(projections)
},
op_edge_order = function(angle) {
op_ref <- as_coord2d(self$c)$translate(degrees(angle + 180), 10 * self$width)
dists <- abs(self$edges$mid_point - op_ref)
order(dists, decreasing = TRUE)
},
op_edges = function(angle) {
self$edges[self$op_edge_order(angle)]
}),
private = list(center = NULL),
active = list(x = function() self$vertices$x,
y = function() self$vertices$y,
c = function() {
if (is.null(private$center)) {
private$center <- mean(self$vertices)
}
private$center
},
width = function() {
dx <- diff(range(self$vertices$x))
dy <- diff(range(self$vertices$y))
max(dx, dy)
})
)
LineSegment <- R6Class("line_segment",
public = list(p1=NULL, p2=NULL,
initialize = function(p1, p2) {
self$p1 <- p1
self$p2 <- p2
}),
active = list(mid_point = function() {
x <- (self$p1$x + self$p2$x) / 2
y <- (self$p1$y + self$p2$y) / 2
as_coord2d(x, y)
},
orthogonal = function() {
affiner::normal2d(self$p1 - self$p2)
})
)
#' @export
`[.line_segment` <- function(x, i) LineSegment$new(x$p1[i], x$p2[i])
ConvexPolygon <- R6Class("convex_polygon", inherit = Polygon)
#### ConcavePolygon, add a list of convex polygons that cover it to test SAT
#### Most value adding if adding something like megahexes but could be used for stars as well
# "collision detection" via Separating Axis Theorem
do_projections_overlap <- function(r1, r2) {
do_ranges_overlap(r1[1], r1[2], r2[1], r2[2])
}
do_convex_polygons_overlap <- function(s1, s2) {
normals <- c(s1$normals, s2$normals)
for (i in seq_along(normals)) {
n <- normals[i]
if (!do_projections_overlap(s1$project(n), s2$project(n))) {
return(FALSE)
}
}
TRUE
}
does_convex_polygon_overlap_circle <- function(p, c) { # nolint
c_normals <- affiner::normal2d(p$vertices - c$c)
if (any(is.nan(c_normals))) # happens if center of circle same as vertex
return(TRUE)
normals <- c(p$normals, c_normals)
for (i in seq_along(normals)) {
n <- normals[i]
if (!do_projections_overlap(p$project(n), c$project(n))) {
return(FALSE)
}
}
TRUE
}
do_shapes_overlap <- function(s1, s2) {
if (inherits(s1, "circle") && inherits(s2, "circle")) {
less_than(abs(s1$c - s2$c), s1$r + s2$r)
} else if (inherits(s1, "convex_polygon") && inherits(s2, "convex_polygon")) {
do_convex_polygons_overlap(s1, s2)
} else if (inherits(s1, "convex_polygon") && inherits(s2, "circle")) {
does_convex_polygon_overlap_circle(s1, s2)
} else if (inherits(s1, "circle") && inherits(s2, "convex_polygon")) {
does_convex_polygon_overlap_circle(s2, s1)
} else {
TRUE
}
}
# Name 'nigh' to avoid potential conflict with 'dplyr::near()'
nigh <- function(x, y, tolerance = 1e-6) {
if (length(y) < length(x)) y <- rep(y, length.out=length(x))
isTRUE(all.equal(x, y, tolerance = tolerance))
}
# robust version of `acos()` that returns in degrees
arccos <- function(x) {
affiner::arccosine(x, "degrees")
}
# Axis-angle representation to rotation matrix
# https://en.wikipedia.org/wiki/Axis-angle_representation
# Because we do rotation matrix post-multiplication instead of pre-multiplication we usually need to multiply angles
# in following algorithms by -1
#' @rdname geometry_utils
#' @inheritParams save_piece_obj
#' @param axis_z Third coordinate of the axis unit vector (usually inferred).
#' @param angle Numeric vector in degrees (counter-clockwise) or an [affiner::angle()] vector.
#' @param ... Ignored
#' @export
AA_to_R <- function(angle = 0, axis_x = 0, axis_y = 0, axis_z = NA, ...) {
if (is.na(axis_z)) {
inner <- 1 - axis_x^2 - axis_y^2
if (nigh(inner, 0)) {
axis_z <- 0
} else {
axis_z <- sqrt(inner)
}
}
axis <- as_coord3d(axis_x, axis_y, axis_z)
affiner::rotate3d(axis, degrees(angle))[1:3, 1:3]
}
# Rotation matrix to Axis-angle representation
# https://en.wikipedia.org/wiki/Axis-angle_representation
#' @param R 3D rotation matrix (post-multiplied)
#' @rdname geometry_utils
#' @export
R_to_AA <- function(R = diag(3)) {
l <- affiner::rotate3d_to_AA(R, unit = "degrees")
list(angle = as.numeric(l$theta),
axis_x = l$axis$x,
axis_y = l$axis$y,
axis_z = l$axis$z)
}
# Basic 3D rotation matrices
# https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions
#' Helper functions for making geometric calculations.
#'
#' `to_x()`, `to_y()`, `to_r()`, `to_t()` convert
#' between polar coordinates (in degrees) and Cartesian coordinates.
#' `to_degrees()` and `to_radians()` converts between degrees and radians.
#' `AA_to_R()` and `R_to_AA()` convert back and forth between (post-multiplied) rotation matrix
#' and axis-angle representations of 3D rotations.
#' `R_x()`, `R_y()`, and `R_z()` build (post-multiplied) rotation matrices for simple rotations around
#' the x, y, and z axes.
#'
#' [pp_cfg()] uses polar coordinates to determine where the "primary" and "directional"
#' symbols are located on a game piece.
#' They are also useful for drawing certain shapes and for making game diagrams on hex boards.
#'
#' `piecepackr` and `grid` functions use angles in degrees
#' but the `base` trigonometry functions usually use radians.
#'
#' `piecepackr`'s 3D graphics functions [save_piece_obj()], [piece()], [piece3d()], and [piece_mesh()]
#' use the axis-angle representation for 3D rotations.
#' The axis-angle representation involves specifying a unit vector
#' indicating the direction of an axis of rotation and an angle describing the (counter-clockwise)
#' rotation around that axis. Because it is a unit vector one only needs to specify the first two elements,
#' `axis_x` and `axis_y`, and we are able to infer the 3rd element `axis_z`. The default of
#' `axis = 0`, `axis_y = 0`, and implied `axis_z = 1`
#' corresponds to a rotation around the z-axis which is reverse-compatible
#' with the originally 2D `angle` interpretation in [grid.piece()]. In order to figure out the appropriate
#' axis-angle representation parameters `R_to_AA()`, `R_x()`, `R_y()`, and `R_z()` allow one
#' to first come up with an appropriate (post-multiplied) 3D rotation matrix by chaining simple rotations
#' and then convert them to the corresponding axis-angle representation.
#' Pieces are rotated as if their center was at the origin.
#'
#' @examples
#' to_x(90, 1)
#' to_y(180, 0.5)
#' to_t(0, -1)
#' to_r(0.5, 0)
#' all.equal(pi, to_radians(to_degrees(pi)))
#' # default axis-angle axis is equivalent to a rotation about the z-axis
#' all.equal(AA_to_R(angle=60), R_z(angle=60))
#' # axis-angle representation of 90 rotation about the x-axis
#' R_to_AA(R_x(90))
#' # find Axis-Angle representation of first rotating about x-axis 180 degrees
#' # and then rotating about z-axis 45 degrees
#' R_to_AA(R_x(180) %*% R_z(45))
#'
#' @seealso \url{https://en.wikipedia.org/wiki/Axis-angle_representation} for more details
#' about the Axis-angle representation of 3D rotations.
#' See \code{\link[base]{Trig}} for R's built-in trigonometric functions.
#' @name geometry_utils
NULL
#' @rdname geometry_utils
#' @export
R_x <- function(angle = 0) {
c <- affiner::cosine(degrees(-angle))
s <- affiner::sine(degrees(-angle))
matrix(c(1, 0, 0,
0, c, -s,
0, s, c),
ncol = 3, byrow = TRUE)
}
#' @rdname geometry_utils
#' @export
R_y <- function(angle = 0) {
c <- affiner::cosine(degrees(-angle))
s <- affiner::sine(degrees(-angle))
matrix(c(c, 0, s,
0, 1, 0,
-s, 0, c),
ncol = 3, byrow = TRUE)
}
#' @rdname geometry_utils
#' @export
R_z <- function(angle = 0) {
c <- affiner::cosine(degrees(-angle))
s <- affiner::sine(degrees(-angle))
matrix(c(c, -s, 0,
s, c, 0,
0, 0, 1),
ncol = 3, byrow = TRUE)
}
#' @rdname geometry_utils
#' @export
to_radians <- function(t) as.numeric(affiner::radians(degrees(t)))
#' @rdname geometry_utils
#' @export
to_degrees <- function(t) as.numeric(degrees(affiner::radians(t)))
#' @rdname geometry_utils
#' @param t Numeric vector in degrees (or radians for `to_degrees()`) or an [affiner::angle()] vector.
#' @param r Radial distance
#' @export
to_x <- function(t, r) {
r * affiner::cosine(degrees(t))
}
#' @rdname geometry_utils
#' @export
to_y <- function(t, r) {
r * affiner::sine(degrees(t))
}
#' @rdname geometry_utils
#' @param x Cartesian x coordinate
#' @param y Cartesian y coordinate
#' @export
to_r <- function(x, y) {
sqrt(x^2 + y^2)
}
#' @rdname geometry_utils
#' @export
to_t <- function(x, y) {
180 * atan2(y, x) / pi
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.