R/verify_taxa.R

Defines functions verify_taxa

Documented in verify_taxa

#' Verify taxa that the GBIF Backbone Taxonomy does not recognize or will lump
#'
#' Verify taxa that the \href{https://doi.org/10.15468/39omei}{GBIF Backbone
#' Taxonomy} does not recognize (no backbone match) or will lump under another
#' name (synonyms). This is done by adding a \code{verificationKey} to the input
#' dataframe, populated with: \itemize{ \item{For \code{ACCEPTED} and
#' \code{DOUBTFUL} taxa: the backbone taxon key for that taxon (taxon is its own
#' unit and won't be lumped).} \item{For other taxa: a manually chosen and thus
#' verified backbone taxon key. This could either be the taxon key of: \itemize{
#' \item{accepted taxon suggested by GBIF: backbone synonymy is accepted and
#' taxon will be lumped.} \item{another accepted taxon: backbone synonymy is
#' rejected, but taxon will be lumped under another name.} \item{taxon itself:
#' backbone synonymy is rejected, taxon will be considered as separate taxon.}
#' \item{other taxon/taxa: automatic backbone match failed, but taxon can be
#' considered/lumped with manually found taxon/taxa (e.g. hybrid formula
#' considered equal to its hybrid parents).} }} } The manually chosen
#' \code{verificationKey} should be provided in \code{verification}: a dataframe
#' (probably read from a file) listing all checklist taxon/backbone
#' taxon/accepted taxon combinations that require verification. The function
#' will update a provided verification based on the input taxa or create a new
#' one if none is provided. Any changes to the verification are also provided as
#' ancillary information.
#'
#' @param taxa df. Dataframe with at least the following (default) columns for
#'   each taxon: \itemize{ \item{\code{taxonKey}: numeric. Non-backbone
#'   checklist taxon key assigned by GBIF.} \item{\code{scientificName}:
#'   character. Scientific name as interpreted by GBIF.}
#'   \item{\code{datasetKey}: character. Dataset key (UUID) assigned by GBIF of
#'   originating checklist.} \item{\code{bb_key}: numeric. Taxon key of matching
#'   backbone taxon (if any).} \item{\code{bb_scientificName}: character.
#'   Scientific name of matching backbone taxon.} \item{\code{bb_kingdom}:
#'   character. Kingdom of matching backbone taxon.} \item{\code{bb_rank}:
#'   character. Rank of matching backbone taxon.}
#'   \item{\code{bb_taxonomicStatus}: character. Taxonomic status of matching
#'   backbone taxon.} \item{\code{bb_acceptedKey}: numeric. Accepted key of
#'   taxon for which matching backbone taxon is considered a synonym.}
#'   \item{\code{bb_acceptedName}: character. Accepted name of taxon for which
#'   matching backbone taxon is considered a synonym.} }
#' @param verification df. Dataframe with at least the following columns for
#'   each checklist taxon/backbone taxon/accepted taxon combination: \itemize{
#'   \item{\code{taxonKey}: numeric. Non-backbone checklist taxon key assigned
#'   by GBIF.} \item{\code{scientificName}: character. Scientific name as
#'   interpreted by GBIF.} \item{\code{datasetKey}: character. Dataset key
#'   (UUID) assigned by GBIF of originating checklist.} \item{\code{bb_key}:
#'   numeric. Taxon key of matching backbone taxon (if any).}
#'   \item{\code{bb_scientificName}: character. Scientific name of matching
#'   backbone taxon.} \item{\code{bb_kingdom}: character. Kingdom of matching
#'   backbone taxon.} \item{\code{bb_rank}: character. Rank of matching backbone
#'   taxon.} \item{\code{bb_taxonomicStatus}: character. Taxonomic status of
#'   matching backbone taxon.} \item{\code{bb_acceptedKey}: numeric. Taxon key
#'   of accepted backbone taxon in case matching backbone taxon is considered a
#'   synonym.} \item{\code{bb_acceptedName}: character. Scientific name of
#'   accepted backbone taxon in case matching backbone taxon is considered a
#'   synonym.} \item{\code{bb_acceptedKingdom}: character. Kingdom of accepted
#'   taxon. Expected to be equal to \code{bb_kingdom}.}
#'   \item{\code{bb_acceptedRank}: character. Rank of accepted taxon.}
#'   \item{\code{bb_acceptedTaxonomicStatus}: character. Taxonomic status of
#'   accepted taxon. Expected to be \code{ACCEPTED}.}
#'   \item{\code{verificationKey}: character. Taxon key(s) of backbone taxon
#'   manually set by expert.} \item{\code{remarks}: character. Remarks provided
#'   by the expert.} \item{\code{verifiedBy}: character. Name of the person who
#'   assigned \code{verificationKey}.} \item{\code{dateAdded}: date. Date on
#'   which new combinations were added.} \item{\code{outdated}: logical.
#'   \code{TRUE} when combination was not used for input taxa.} }
#' @param taxonKey,scientificName,datasetKey,bb_key,bb_scientificName,bb_kingdom,bb_rank,bb_taxonomicStatus,bb_acceptedKey,bb_acceptedName
#'   Column names of required columns of \code{taxa}. They have to be passed as
#'   strings, e.g. \code{"taxon_keys"}. Default: column names as specified above
#'   in \code{taxa}.
#' @param verification_taxonKey,verification_scientificName,verification_datasetKey,verification_bb_key,verification_bb_scientificName,verification_bb_kingdom,verification_bb_rank,verification_bb_taxonomicStatus,verification_bb_acceptedKey,verification_bb_acceptedName,verification_bb_acceptedKingdom,verification_bb_acceptedRank,verification_bb_acceptedTaxonomicStatus,verification_verificationKey,verification_remarks,verification_verifiedBy,verification_dateAdded,verification_outdated
#'   Column names of required columns of \code{verification}. They have to be
#'   passed as strings, e.g. \code{"verification_taxon_keys"}. Default: column
#'   names as specified above in \code{verification}.
#'
#' @return list. List with three objects: \itemize{ \item{\code{taxa}: df.
#'   Provided dataframe with additional column \code{verificationKey}.}
#'   \item{\code{verification}: df. New or updated dataframe with verification
#'   information.} \item{\code{info}: list. Dataframes with ancillary
#'   information regarding changes to the verification. \itemize{
#'   \item{\code{new_synonyms}: df. Subset of \code{verification} with synonym
#'   taxa found in \code{taxa} but not in provided \code{verification}).}
#'   \item{\code{new_unmatched_taxa}: df. Subset of \code{verification} with
#'   unmatched taxa found in \code{taxa} but not in provided
#'   \code{verification}).} \item{\code{outdated_synonyms}: df. Subset of
#'   \code{verification} with synonyms found in provided \code{verification} but
#'   not in \code{taxa}.} \item{\code{outdated_unmatched_taxa}: df. Subset of
#'   \code{verification} with unmatched taxa found in provided
#'   \code{verification} but not in \code{taxa}.}
#'   \item{\code{updated_bb_scientificName}: df. \code{bb_scientificName}s in
#'   provided \code{verification} that were updated
#'   \code{updated_bb_scientificName} in the backbone since.}
#'   \item{\code{updated_bb_acceptedName}: df. \code{bb_acceptedName}s in
#'   provided \code{verification} that were updated
#'   \code{updated_bb_acceptedName} in the backbone since.}
#'   \item{\code{duplicates}: df. Taxa present in more than one checklist.}
#'   \item{\code{check_verificationKey}: df. Check if provided
#'   \code{verificationKey}s can be found in backbone.} }} }
#'
#' @export
#' @importFrom dplyr %>% .data
#'
#' @examples
#' \dontrun{
#' my_taxa <- data.frame(
#'   taxonKey = c(
#'     141117238,
#'     113794952,
#'     141264857,
#'     100480872,
#'     141264614,
#'     100220432,
#'     141264835,
#'     140563014,
#'     140562956,
#'     145953989,
#'     148437916,
#'     114445583,
#'     141264849,
#'     101790530
#'   ),
#'   scientificName = c(
#'     "Aspius aspius",
#'     "Rana catesbeiana",
#'     "Polystichum tsus-simense J.Smith",
#'     "Apus apus (Linnaeus, 1758)",
#'     "Begonia x semperflorens hort.",
#'     "Rana catesbeiana",
#'     "Spiranthes cernua (L.) Richard x S. odorata (Nuttall) Lindley",
#'     "Atyaephyra desmaresti",
#'     "Ferrissia fragilis",
#'     "Ferrissia fragilis",
#'     "Ferrissia fragilis",
#'     "Rana blanfordii Boulenger",
#'     "Pterocarya x rhederiana C.K. Schneider",
#'     "Stenelmis williami Schmude"
#'   ),
#'   datasetKey = c(
#'     "98940a79-2bf1-46e6-afd6-ba2e85a26f9f",
#'     "e4746398-f7c4-47a1-a474-ae80a4f18e92",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "39653f3e-8d6b-4a94-a202-859359c164c5",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "b351a324-77c4-41c9-a909-f30f77268bc4",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "289244ee-e1c1-49aa-b2d7-d379391ce265",
#'     "289244ee-e1c1-49aa-b2d7-d379391ce265",
#'     "3f5e930b-52a5-461d-87ec-26ecd66f14a3",
#'     "1f3505cd-5d98-4e23-bd3b-ffe59d05d7c2",
#'     "3772da2f-daa1-4f07-a438-15a881a2142c",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "9ca92552-f23a-41a8-a140-01abaa31c931"
#'   ),
#'   bb_key = c(
#'     2360181,
#'     2427092,
#'     2651108,
#'     5228676,
#'     NA,
#'     2427092,
#'     NA,
#'     4309705,
#'     2291152,
#'     2291152,
#'     2291152,
#'     2430304,
#'     NA,
#'     1033588
#'   ),
#'   bb_scientificName = c(
#'     "Aspius aspius (Linnaeus, 1758)",
#'     "Rana catesbeiana Shaw, 1802",
#'     "Polystichum tsus-simense (Hook.) J.Sm.",
#'     "Apus apus (Linnaeus, 1758)",
#'     NA,
#'     "Rana catesbeiana Shaw, 1802",
#'     NA,
#'     "Atyaephyra desmarestii (Millet, 1831)",
#'     "Ferrissia fragilis (Tryon, 1863)",
#'     "Ferrissia fragilis (Tryon, 1863)",
#'     "Ferrissia fragilis (Tryon, 1863)",
#'     "Rana blanfordii Boulenger, 1882",
#'     NA,
#'     "Stenelmis williami Schmude"
#'   ),
#'   bb_kingdom = c(
#'     "Animalia",
#'     "Animalia",
#'     "Plantae",
#'     "Animalia",
#'     NA,
#'     "Animalia",
#'     NA,
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     NA,
#'     "Animalia"
#'   ),
#'   bb_rank = c(
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     NA,
#'     "SPECIES",
#'     NA,
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     NA,
#'     "SPECIES"
#'   ),
#'   bb_taxonomicStatus = c(
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     "ACCEPTED",
#'     NA,
#'     "SYNONYM",
#'     NA,
#'     "HOMOTYPIC_SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     NA,
#'     "SYNONYM"
#'   ),
#'   bb_acceptedKey = c(
#'     5851603,
#'     2427091,
#'     4046493,
#'     NA,
#'     NA,
#'     2427091,
#'     NA,
#'     6454754,
#'     9520065,
#'     9520065,
#'     9520065,
#'     2430301,
#'     NA,
#'     1033553
#'   ),
#'   bb_acceptedName = c(
#'     "Leuciscus aspius (Linnaeus, 1758)",
#'     "Lithobates catesbeianus (Shaw, 1802)",
#'     "Polystichum luctuosum (Kunze) Moore.",
#'     NA,
#'     NA,
#'     "Lithobates catesbeianus (Shaw, 1802)",
#'     NA,
#'     "Hippolyte desmarestii Millet, 1831",
#'     "Ferrissia californica (Rowell, 1863)",
#'     "Ferrissia californica (Rowell, 1863)",
#'     "Ferrissia californica (Rowell, 1863)",
#'     "Nanorana blanfordii (Boulenger, 1882)",
#'     NA,
#'     "Stenelmis Dufour, 1835"
#'   ),
#'   taxonID = c(
#'     "alien-fishes-checklist:taxon:c937610f85ea8a74f105724c8f198049",
#'     "88",
#'     "alien-plants-belgium:taxon:57c1d111f14fd5f3271b0da53c05c745",
#'     "4512",
#'     "alien-plants-belgium:taxon:9a6c5ed8907ff169433fe44fcbff0705",
#'     "80-syn",
#'     "alien-plants-belgium:taxon:29409d1e1adc88d6357dd0be13350d6c",
#'     "alien-macroinvertebrates-checklist:taxon:54cca150e1e0b7c0b3f5b152ae64d62b",
#'     "alien-macroinvertebrates-checklist:taxon:73f271d93128a4e566e841ea6e3abff0",
#'     "rinse-checklist:taxon:7afe7b1fbdd06cbdfe97272567825c09",
#'     "ad-hoc-checklist:taxon:32dc2e18733fffa92ba4e1b35d03c4e2",
#'     "a80caa33-da9d-48ed-80e3-f76b0b3810f9",
#'     "alien-plants-belgium:taxon:56d6564f59d9092401c454849213366f",
#'     "193729"
#'   ),
#'   stringsAsFactors = FALSE
#' )
#'
#' my_verification <- data.frame(
#'   taxonKey = c(
#'     113794952,
#'     141264857,
#'     143920280,
#'     141264835,
#'     141264614,
#'     140562956,
#'     145953989,
#'     114445583,
#'     128897752,
#'     101790530,
#'     141265523
#'   ),
#'   scientificName = c(
#'     "Rana catesbeiana",
#'     "Polystichum tsus-simense J.Smith",
#'     "Lemnaceae",
#'     "Spiranthes cernua (L.) Richard x S. odorata (Nuttall) Lindley",
#'     "Begonia x semperflorens hort.",
#'     "Ferrissia fragilis",
#'     "Ferrissia fragilis",
#'     "Rana blanfordii Boulenger",
#'     "Python reticulatus Fitzinger, 1826",
#'     "Stenelmis williami Schmude",
#'     "Veronica austriaca Jacq."
#'   ),
#'   datasetKey = c(
#'     "e4746398-f7c4-47a1-a474-ae80a4f18e92",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "e4746398-f7c4-47a1-a474-ae80a4f18e92",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42",
#'     "289244ee-e1c1-49aa-b2d7-d379391ce265",
#'     "3f5e930b-52a5-461d-87ec-26ecd66f14a3",
#'     "3772da2f-daa1-4f07-a438-15a881a2142c",
#'     "7ddf754f-d193-4cc9-b351-99906754a03b",
#'     "9ca92552-f23a-41a8-a140-01abaa31c931",
#'     "9ff7d317-609b-4c08-bd86-3bc404b77c42"
#'   ),
#'   bb_key = c(
#'     2427092,
#'     2651108,
#'     6723,
#'     NA,
#'     NA,
#'     2291152,
#'     2291152,
#'     2430304,
#'     7587934,
#'     1033588,
#'     NA
#'   ),
#'   bb_scientificName = c(
#'     "Rana catesbeiana Shaw, 1802",
#'     "Polystichum tsus-tsus-tsus (Hook.) Captain",
#'     "Lemnaceae",
#'     NA,
#'     NA,
#'     "Ferrissia fragilis (Tryon, 1863)",
#'     "Ferrissia fragilis (Tryon, 1863)",
#'     "Rana blanfordii Boulenger, 1882",
#'     "Python reticulatus Fitzinger, 1826",
#'     "Stenelmis williami Schmude",
#'     NA
#'   ),
#'   bb_kingdom = c(
#'     "Animalia",
#'     "Plantae",
#'     "Plantae",
#'     NA,
#'     NA,
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     NA
#'   ),
#'   bb_rank = c(
#'     "SPECIES",
#'     "SPECIES",
#'     "FAMILY",
#'     NA,
#'     NA,
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     NA
#'   ),
#'   bb_taxonomicStatus = c(
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     NA,
#'     NA,
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     "SYNONYM",
#'     NA
#'   ),
#'   bb_acceptedKey = c(
#'     2427091,
#'     4046493,
#'     6979,
#'     NA,
#'     NA,
#'     9520065,
#'     9520065,
#'     2427008,
#'     9260388,
#'     1033553,
#'     NA
#'   ),
#'   bb_acceptedName = c(
#'     "Lithobates dummyus (Batman, 2018)",
#'     "Polystichum luctuosum (Kunze) Moore.",
#'     "Araceae",
#'     NA,
#'     NA,
#'     "Ferrissia californica (Rowell, 1863)",
#'     "Ferrissia californica (Rowell, 1863)",
#'     "Hylarana chalconota (Schlegel, 1837)",
#'     "Malayopython reticulatus (Schneider, 1801)",
#'     "Stenelmis Dufour, 1835",
#'     NA
#'   ),
#'   bb_acceptedKingdom = c(
#'     "Animalia",
#'     "Plantae",
#'     "Plantae",
#'     NA,
#'     NA,
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     "Animalia",
#'     NA
#'   ),
#'   bb_acceptedRank = c(
#'     "SPECIES",
#'     "SPECIES",
#'     "FAMILY",
#'     NA,
#'     NA,
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "SPECIES",
#'     "GENUS",
#'     NA
#'   ),
#'   bb_acceptedTaxonomicStatus = c(
#'     "ACCEPTED",
#'     "ACCEPTED",
#'     "ACCEPTED",
#'     NA,
#'     NA,
#'     "ACCEPTED",
#'     "ACCEPTED",
#'     "ACCEPTED",
#'     "ACCEPTED",
#'     "ACCEPTED",
#'     NA
#'   ),
#'   verificationKey = c(
#'     2427091,
#'     4046493,
#'     6979,
#'     "2805420,2805363",
#'     NA,
#'     NA,
#'     NA,
#'     NA,
#'     9260388,
#'     NA,
#'     3172099
#'   ),
#'   remarks = c(
#'     "dummy example 1: bb_acceptedName should be updated.",
#'     "dummy example 2: bb_scientificName should be updated.",
#'     "dummy example 3: not used anymore. Set outdated = TRUE.",
#'     "dummy example 4: multiple keys in verificationKey are allowed.",
#'     "dummy example 5: nothing should happen.",
#'     "dummy example 6: datasetKey should not be modified. If new taxa come in
#'     with same name from other checklsits, they should be added as new rows.
#'     Report them as duplicates in duplicates_taxa",
#'     "dummy example 7: datasetKey should not be modified. If new taxa come in
#'     with same name from other checklsits, they should be added as new rows.
#'     Report them as duplicates in duplicates_taxa",
#'     "dummy example 8: outdated synonym. Set outdated = TRUE.",
#'     "dummy example 9: outdated synonym. outdated is already TRUE. No actions.",
#'     "dummy example 10: outdated synonym. Not outdated anymore. Change outdated
#'     back to FALSE.",
#'     "dummy example 11: outdated unmatched taxa. Set outdated = TRUE."
#'   ),
#'   verifiedBy = c(
#'     "Damiano Oldoni",
#'     "Peter Desmet",
#'     "Stijn Van Hoey",
#'     "Tanja Milotic",
#'     NA,
#'     NA,
#'     NA,
#'     NA,
#'     "Lien Reyserhove",
#'     NA,
#'     "Dimitri Brosens"
#'   ),
#'   dateAdded = as.Date(
#'     c(
#'       "2018-07-01",
#'       "2018-07-01",
#'       "2018-07-01",
#'       "2018-07-16",
#'       "2018-07-16",
#'       "2018-07-01",
#'       "2018-11-20",
#'       "2018-11-29",
#'       "2018-12-01",
#'       "2018-12-02",
#'       "2018-12-03"
#'     )
#'   ),
#'   outdated = c(
#'     FALSE,
#'     FALSE,
#'     FALSE,
#'     FALSE,
#'     FALSE,
#'     FALSE,
#'     FALSE,
#'     FALSE,
#'     TRUE,
#'     TRUE,
#'     FALSE
#'   ),
#'   stringsAsFactors = FALSE
#' )
#'
#' # output
#' verify_taxa(taxa = my_taxa, verification = my_verification)
#' verify_taxa(taxa = my_taxa)
#'
#' # you can also provide your own column names for one or more required columns:
#' library(dplyr)
#' my_taxa_other_colnames <-
#'   rename(
#'     my_taxa,
#'     checklist = datasetKey,
#'     scientific_names = scientificName
#'   )
#'
#' my_verification_other_colnames <-
#'   rename(
#'     my_verification,
#'     backbone_scientific_names = bb_scientificName,
#'     backbone_accepted_names = bb_acceptedName,
#'     is_outdated = outdated,
#'     author_verification = verifiedBy
#'   )
#'
#' # output
#' verify_taxa(
#'   taxa = my_taxa_other_colnames,
#'   verification = my_verification_other_colnames
#' )
#' }
verify_taxa <- function(taxa,
                        verification = NULL,
                        taxonKey = "taxonKey",
                        scientificName = "scientificName",
                        datasetKey = "datasetKey",
                        bb_key = "bb_key",
                        bb_scientificName = "bb_scientificName",
                        bb_kingdom = "bb_kingdom",
                        bb_rank = "bb_rank",
                        bb_taxonomicStatus = "bb_taxonomicStatus",
                        bb_acceptedKey = "bb_acceptedKey",
                        bb_acceptedName = "bb_acceptedName",
                        verification_taxonKey = "taxonKey",
                        verification_scientificName = "scientificName",
                        verification_datasetKey = "datasetKey",
                        verification_bb_key = "bb_key",
                        verification_bb_scientificName = "bb_scientificName",
                        verification_bb_kingdom = "bb_kingdom",
                        verification_bb_rank = "bb_rank",
                        verification_bb_taxonomicStatus = "bb_taxonomicStatus",
                        verification_bb_acceptedKey = "bb_acceptedKey",
                        verification_bb_acceptedName = "bb_acceptedName",
                        verification_bb_acceptedKingdom = "bb_acceptedKingdom",
                        verification_bb_acceptedRank = "bb_acceptedRank",
                        verification_bb_acceptedTaxonomicStatus = "bb_acceptedTaxonomicStatus",
                        verification_verificationKey = "verificationKey",
                        verification_remarks = "remarks",
                        verification_verifiedBy = "verifiedBy",
                        verification_dateAdded = "dateAdded",
                        verification_outdated = "outdated") {
  # Start tests input
  message("Check input dataframes...", appendLF = FALSE)
  
  # Test taxa
  # Retrieve names of needed columns of taxa
  name_col_taxa_original <- c(
    taxonKey, scientificName, datasetKey, bb_key, bb_scientificName,
    bb_kingdom, bb_rank, bb_taxonomicStatus, bb_acceptedKey, bb_acceptedName
  )
  
  # Define vector of column names of taxa we will use later
  name_col_taxa <- c(
    "taxonKey", "scientificName", "datasetKey", "bb_key",
    "bb_scientificName", "bb_kingdom", "bb_rank", "bb_taxonomicStatus",
    "bb_acceptedKey", "bb_acceptedName"
  )
  # Check taxa is a dataframe
  assertthat::assert_that(is.data.frame(taxa))
  
  # Check presence needed columns
  col_not_present <-
    name_col_taxa_original[which(!name_col_taxa_original %in% names(taxa))]
  assertthat::assert_that(
    all(name_col_taxa_original %in% names(taxa)),
    msg = paste(
      "The following columns of taxa are not present:",
      paste0(paste(col_not_present, collapse = ", "), "."),
      "Did you maybe forget to provide the mapping of",
      "columns named differently than the default names?"
    )
  )
  
  # Check that taxon keys are all set up, no NAs present in input taxa
  assertthat::assert_that(all(!is.na(taxa[[taxonKey]])),
                          msg = sprintf(
                            paste0(
                              "Missing values found in taxon keys of input ",
                              "taxa. Check values in column %s."
                            ),
                            taxonKey
                          )
  )
  
  # Check that taxon keys are unique in taxa
  assertthat::assert_that(nrow(taxa) == length(unique(taxa[[taxonKey]])),
                          msg = sprintf(
                            paste0(
                              "Taxon keys of input taxa must be unique. ",
                              "Check values in column %s."
                            ),
                            taxonKey
                          )
  )
  
  # Convert to default column names
  taxa <-
    taxa %>%
    dplyr::rename_at(dplyr::vars(name_col_taxa_original), ~name_col_taxa)
  # Check class columns
  taxa$scientificName <- as.character(taxa$scientificName)
  taxa$datasetKey <- as.character(taxa$datasetKey)
  taxa$bb_scientificName <- as.character(taxa$bb_scientificName)
  taxa$bb_kingdom <- as.character(taxa$bb_kingdom)
  taxa$bb_rank <- as.character(taxa$bb_rank)
  taxa$bb_taxonomicStatus <- as.character(taxa$bb_taxonomicStatus)
  taxa$bb_acceptedName <- as.character(taxa$bb_acceptedName)
  taxa$taxonKey <- as.numeric(taxa$taxonKey)
  taxa$bb_key <- as.numeric(taxa$bb_key)
  taxa$bb_acceptedKey <- as.numeric(taxa$bb_acceptedKey)
  
  # Check that accepted or doubtful taxa have a backbone key
  assertthat::assert_that(
    taxa %>%
      dplyr::filter(.data$bb_taxonomicStatus %in% c("ACCEPTED", "DOUBTFUL") &
               is.na(.data$bb_key)) %>%
      nrow() == 0,
    msg = "Taxa which don't need verification must have a backbone key."
  )
  
  # Unmatched taxa should have no GBIF Backbone information at all
  assertthat::assert_that(
    taxa %>%
      dplyr::filter(is.na(.data$bb_key)) %>%
      dplyr::filter_at(dplyr::vars(dplyr::starts_with("bb_")),
                       dplyr::all_vars(is.na(.))) %>%
      nrow() ==
      taxa %>%
      dplyr::filter(is.na(.data$bb_key)) %>%
      dplyr::filter_at(dplyr::vars(dplyr::starts_with("bb_")),
                       dplyr::any_vars(is.na(.))) %>%
      nrow(),
    msg = "Columns with GBIF Backbone info should be empty for unmatched taxa."
  )
  
  # Throw a message if a column called verificationKey already exists
  message_existence_verificationKey <- NULL
  if ("verificationKey" %in% names(taxa)) {
    message_existence_verificationKey <-
      "Column verificationKey already exists. It will be overwritten."
    taxa <-
      taxa %>%
      dplyr::select(-"verificationKey")
  }
  
  # Test verification
  # Retrieve names of needed columns of verification
  name_col_verification_original <- c(
    verification_taxonKey, verification_scientificName,
    verification_datasetKey, verification_bb_key,
    verification_bb_scientificName, verification_bb_kingdom,
    verification_bb_rank, verification_bb_taxonomicStatus,
    verification_bb_acceptedKey, verification_bb_acceptedName,
    verification_bb_acceptedKingdom, verification_bb_acceptedRank,
    verification_bb_acceptedTaxonomicStatus, verification_verificationKey,
    verification_remarks, verification_verifiedBy,
    verification_dateAdded, verification_outdated
  )
  
  # Define vector of names of required columns of verification we will use later
  name_col_verification <- c(
    "taxonKey", "scientificName", "datasetKey",
    "bb_key", "bb_scientificName",
    "bb_kingdom", "bb_rank", "bb_taxonomicStatus",
    "bb_acceptedKey", "bb_acceptedName",
    "bb_acceptedKingdom", "bb_acceptedRank",
    "bb_acceptedTaxonomicStatus",
    "verificationKey", "remarks",
    "verifiedBy", "dateAdded", "outdated"
  )
  name_col_verification_extra <-
    names(verification)[!names(verification) %in%
                          name_col_verification_original]
  
  # Make empty tibble df if not exists
  if (is.null(verification)) {
    verification <- dplyr::tibble(
      taxonKey = double(),
      scientificName = character(),
      datasetKey = character(),
      bb_key = double(),
      bb_scientificName = character(),
      bb_kingdom = character(),
      bb_rank = character(),
      bb_taxonomicStatus = character(),
      bb_acceptedKey = double(),
      bb_acceptedName = character(),
      bb_acceptedKingdom = character(),
      bb_acceptedRank = character(),
      bb_acceptedTaxonomicStatus = character(),
      verificationKey = character(),
      remarks = character(),
      verifiedBy = character(),
      dateAdded = numeric(),
      outdated = logical()
    )
    class(verification$dateAdded) <- "Date"
  } else {
    # Check verification is a dataframe
    assertthat::assert_that(is.data.frame(verification))
    
    # Check presence needed columns
    col_not_present <-
      name_col_verification_original[
        which(!name_col_verification_original %in% names(verification))
      ]
    assertthat::assert_that(
      all(name_col_verification_original %in% names(verification)),
      msg = paste(
        "The following columns of verification are not present:",
        paste0(paste(col_not_present, collapse = ", "), "."),
        "Did you maybe forget to provide the mapping of",
        "columns named differently than the default names?"
      )
    )
    
    # Check that taxon keys are all set up, no NAs present in verification df
    assertthat::assert_that(all(!is.na(verification[[verification_taxonKey]])),
                            msg = sprintf(
                              paste0(
                                "Missing values found in taxon keys of input ",
                                "taxa. Check values in column %s."
                              ),
                              verification_taxonKey
                            )
    )
    
    # Check that taxon keys are unique in verification df
    assertthat::assert_that(
      nrow(verification) == length(unique(verification[[verification_taxonKey]])),
      msg = sprintf(
        paste0(
          "Taxon keys of input taxa must be unique. ",
          "Check values in column %s."
        ),
        taxonKey
      )
    )
    
    # Convert to standard column names
    verification <-
      verification %>%
      dplyr::rename_at(dplyr::vars(name_col_verification_original), ~name_col_verification)
  }
  
  # Check class columns
  verification$scientificName <- as.character(verification$scientificName)
  verification$datasetKey <- as.character(verification$datasetKey)
  verification$bb_scientificName <- as.character(verification$bb_scientificName)
  verification$bb_kingdom <- as.character(verification$bb_kingdom)
  verification$bb_rank <- as.character(verification$bb_rank)
  verification$bb_taxonomicStatus <-
    as.character(verification$bb_taxonomicStatus)
  verification$bb_acceptedName <- as.character(verification$bb_acceptedName)
  verification$bb_acceptedKingdom <-
    as.character(verification$bb_acceptedKingdom)
  verification$bb_acceptedRank <- as.character(verification$bb_acceptedRank)
  verification$bb_acceptedTaxonomicStatus <-
    as.character(verification$bb_acceptedTaxonomicStatus)
  verification$verificationKey <- as.character(verification$verificationKey)
  verification$remarks <- as.character(verification$remarks)
  verification$verifiedBy <- as.character(verification$verifiedBy)
  verification$taxonKey <- as.numeric(verification$taxonKey)
  verification$bb_key <- as.numeric(verification$bb_key)
  verification$bb_acceptedKey <- as.numeric(verification$bb_acceptedKey)
  verification$dateAdded <- as.Date(verification$dateAdded)
  verification$outdated <- as.logical(verification$outdated)
  assertthat::assert_that(
    all(nchar(verification$datasetKey) == 36) &
      isFALSE(any(grepl(pattern = ",", x = verification$datasetKey))),
    msg = paste(
      "Incorrect datesetKey:", verification$datasetKey,
      "Is expected to be 36-character UUID."
    )
  )
  assertthat::assert_that(verification %>%
                dplyr::filter(is.na(.data$outdated)) %>%
                nrow() == 0,
              msg = "Only logicals (TRUE/FALSE) allowed in 'outdated' of verification."
  )
  
  # Allow multiple comma separated verification keys (character)
  class(verification$verificationKey) <- "character"
  
  # Allow remarks (remarks col empty means for R a column logicals)
  class(verification$remarks) <- "character"
  
  # Check for integrity synonym relations
  assertthat::assert_that(
    verification %>%
      dplyr::filter((is.na(.data$bb_acceptedName) &
                !is.na(.data$bb_acceptedKey)
      ) |
        (!is.na(.data$bb_acceptedName) &
           is.na(.data$bb_acceptedKey)
        )) %>%
      nrow() == 0,
    msg = paste(
      "bb_acceptedName and bb_acceptedKey",
      "should be both NA or both present."
    )
  )
  
  # Check that only synonyms and unmatched taxa are present in verification
  taxonomic_status <-
    verification %>%
    dplyr::distinct(.data$bb_taxonomicStatus) %>%
    dplyr::filter(!is.na(.data$bb_taxonomicStatus)) %>%
    dplyr::pull()
  not_allowed_taxonomicStatus <- c("ACCEPTED", "DOUBTFUL")
  assertthat::assert_that(all(!taxonomic_status %in% not_allowed_taxonomicStatus),
              msg = "Only synonyms and unmatched taxa allowed in verification."
  )
  message("DONE.", appendLF = TRUE)
  if (!is.null(message_existence_verificationKey)) {
    message(message_existence_verificationKey, appendLF = TRUE)
  }
  
  # Get order taxon keys
  ordered_taxon_keys <-
    taxa %>%
    dplyr::select("taxonKey")
  
  # Find taxa which don't need any verification and assign verificationKey
  message("Assign verificationKey to taxa which don't need verification...",
          appendLF = FALSE
  )
  not_to_verify_taxa <-
    taxa %>%
    dplyr::filter(!is.na(.data$bb_key) &
                    bb_taxonomicStatus %in% c("ACCEPTED", "DOUBTFUL")) %>%
    dplyr::mutate(
      verificationKey = as.character(bb_key)
    )
  message("DONE.", appendLF = TRUE)
  
  # Go further with taxa which need verification
  taxa_input <- taxa
  taxa <-
    taxa %>%
    dplyr::anti_join(not_to_verify_taxa,
                     by = colnames(taxa)
    )
  
  message("Find new synonyms...", appendLF = FALSE)
  # Find new synonyms (= new triplets (taxonKey, bb_key, bb_acceptedKey))
  new_synonyms <-
    taxa %>%
    # Remove not synonyms
    dplyr::filter(!is.na(.data$bb_taxonomicStatus) &
             !.data$bb_taxonomicStatus %in% c("ACCEPTED", "DOUBTFUL")) %>%
    dplyr::anti_join(verification,
                     by = c("taxonKey", "bb_key", "bb_acceptedKey")
    ) %>%
    dplyr::mutate(
      bb_acceptedKingdom = NA_character_,
      bb_acceptedRank = NA_character_,
      bb_acceptedTaxonomicStatus = NA_character_,
      verificationKey = NA_character_,
      remarks = NA_character_,
      verifiedBy = NA_character_,
      dateAdded = Sys.Date(),
      outdated = FALSE
    ) %>%
    dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
  message("DONE.", appendLF = TRUE)
  
  # Find new taxa not matched to GBIF backbone
  message("Find new unmatched taxa...", appendLF = FALSE)
  unmatched_taxa <-
    verification %>%
    dplyr::filter(is.na(.data$bb_key)) %>%
    dplyr::distinct(.data$taxonKey) %>%
    dplyr::pull()
  new_unmatched_taxa <-
    taxa %>%
    dplyr::filter(is.na(.data$bb_key)) %>%
    dplyr::filter(!.data$taxonKey %in% unmatched_taxa) %>%
    dplyr::mutate(
      bb_acceptedKingdom = NA_character_,
      bb_acceptedRank = NA_character_,
      bb_acceptedTaxonomicStatus = NA_character_,
      verificationKey = NA_character_,
      remarks = NA_character_,
      verifiedBy = NA_character_,
      dateAdded = Sys.Date(),
      outdated = FALSE
    ) %>%
    dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
  message("DONE.", appendLF = TRUE)
  
  # Create df of updated bb_scientificName
  message("Update backbone scientific names...", appendLF = FALSE)
  if (nrow(verification) > 0) {
    updated_bb_scientificName <-
      verification %>%
      dplyr::filter(!is.na(.data$bb_scientificName)) %>%
      dplyr::left_join(taxa,
                by = c("taxonKey", "bb_key", "bb_acceptedKey")
      ) %>%
      dplyr::rename(
        "bb_scientificName" = "bb_scientificName.x",
        "updated_bb_scientificName" = "bb_scientificName.y"
      ) %>%
      dplyr::filter(.data$bb_scientificName != .data$updated_bb_scientificName) %>%
      dplyr::select(
        which(colnames(verification) %in% colnames(.)),
        "updated_bb_scientificName",
        dplyr::ends_with(".x")
      ) %>%
      dplyr::rename_at(
        dplyr::vars(dplyr::ends_with(".x")), 
        list(~ stringr::str_remove(., "\\.x"))
      )
    # Update bb_scientificName of verification
    verification <-
      verification %>%
      dplyr::anti_join(updated_bb_scientificName,
                       by = colnames(verification)
      ) %>%
      dplyr::bind_rows(
        updated_bb_scientificName %>%
          dplyr::mutate(bb_scientificName = updated_bb_scientificName) %>%
          dplyr::select(-"updated_bb_scientificName")) %>%
      dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
    # Version for info
    updated_bb_scientificName_short <-
      updated_bb_scientificName %>%
      dplyr::select(
        "taxonKey", "bb_key", "bb_acceptedKey",
        "bb_scientificName", "updated_bb_scientificName"
      )
  }
  else {
    updated_bb_scientificName_short <- dplyr::tibble(
      taxonKey = double(),
      bb_key = double(),
      bb_acceptedKey = double(),
      bb_scientificName = character(),
      updated_bb_scientificName = character()
    )
  }
  # Retrieve present column names and original ones for later renaming
  name_col_updated_bb_scientificName_short <-
    names(updated_bb_scientificName_short)
  name_col_updated_bb_scientificName_short_original <-
    c(
      verification_taxonKey,
      verification_bb_key,
      verification_bb_acceptedKey,
      verification_bb_scientificName,
      paste0("updated_", verification_bb_scientificName)
    )
  message("DONE.", appendLF = TRUE)
  
  # Create df of updated acceptedName
  message("Update backbone accepted names...", appendLF = FALSE)
  if (nrow(verification) > 0) {
    updated_bb_acceptedName <-
      verification %>%
      dplyr::filter(!is.na(.data$bb_acceptedName)) %>%
      dplyr::left_join(taxa,
                       by = c("taxonKey", "bb_key", "bb_acceptedKey")
      ) %>%
      dplyr::rename(
        "bb_acceptedName" = "bb_acceptedName.x",
        "updated_bb_acceptedName" = "bb_acceptedName.y"
      ) %>%
      dplyr::filter(bb_acceptedName != updated_bb_acceptedName) %>%
      dplyr::select(
        which(colnames(verification) %in% colnames(.)),
        "updated_bb_acceptedName",
        dplyr::ends_with(".x")
      ) %>%
      dplyr::rename_at(dplyr::vars(dplyr::ends_with(".x")),
                       list(~ stringr::str_remove(., "\\.x"))
      )
    # Update bb_acceptedName of verification
    verification <-
      verification %>%
      dplyr::anti_join(updated_bb_acceptedName,
                by = colnames(verification)
      ) %>%
      dplyr::bind_rows(updated_bb_acceptedName %>%
                  dplyr::mutate(bb_acceptedName = updated_bb_acceptedName) %>%
                  dplyr::select(-"updated_bb_acceptedName")) %>%
      dplyr::select(dplyr::one_of(name_col_verification),
                    name_col_verification_extra
    )
    # Version for info
    updated_bb_acceptedName_short <-
      updated_bb_acceptedName %>%
      dplyr::select(
        "taxonKey", "bb_key", "bb_acceptedKey",
        "bb_acceptedName", "updated_bb_acceptedName"
      )
  }
  else {
    updated_bb_acceptedName_short <- dplyr::tibble(
      taxonKey = double(),
      bb_key = double(),
      bb_acceptedKey = double(),
      bb_acceptedName = character(),
      updated_bb_acceptedName = character()
    )
  }
  # Retrieve present column names and original ones for later renaming
  name_col_updated_bb_acceptedName_short <-
    names(updated_bb_acceptedName_short)
  name_col_updated_bb_acceptedName_short_original <-
    c(
      verification_taxonKey,
      verification_bb_key,
      verification_bb_acceptedKey,
      verification_bb_acceptedName,
      paste0("updated_", verification_bb_acceptedName)
    )
  
  message("DONE.", appendLF = TRUE)
  
  # Add new synonyms to verification
  verification <-
    verification %>%
    dplyr::bind_rows(new_synonyms) %>%
    dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
  
  # Add new unmatches to verification
  verification <-
    verification %>%
    dplyr::bind_rows(new_unmatched_taxa) %>%
    dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
  
  # Retrieve backbone information about taxa the synonyms point to
  message("Retrieve backbone info about accepted taxa for synonyms...",
          appendLF = FALSE
  )
  if (nrow(verification) > 0) {
    accepted_keys <-
      verification %>%
      dplyr::distinct(bb_acceptedKey) %>%
      dplyr::filter(!is.na(.data$bb_acceptedKey))
    accepted_info <- purrr::pmap_dfr(
      accepted_keys,
      function(bb_acceptedKey) {
        rgbif::name_usage(
          key = bb_acceptedKey
        )$data
      }
    ) %>%
      dplyr::select("key", "kingdom", "rank", "taxonomicStatus") %>%
      dplyr::rename(
        bb_acceptedKey = .data$key,
        bb_acceptedKingdom = .data$kingdom,
        bb_acceptedRank = .data$rank,
        bb_acceptedTaxonomicStatus = .data$taxonomicStatus
      )
    # Update backbone info about accepted taxa in verification
    verification <-
      verification %>%
      dplyr::select(-c(
        "bb_acceptedKingdom",
        "bb_acceptedRank",
        "bb_acceptedTaxonomicStatus"
      )) %>%
      dplyr::left_join(accepted_info, by = "bb_acceptedKey") %>%
      dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
    # Add backbone info to new_synonys too
    new_synonyms <-
      new_synonyms %>%
      dplyr::select(-c(
        "bb_acceptedKingdom",
        "bb_acceptedRank",
        "bb_acceptedTaxonomicStatus"
      )) %>%
      dplyr::left_join(verification %>%
                  dplyr::select(
                    "taxonKey", "bb_key", "bb_acceptedKey",
                    "bb_acceptedKingdom", "bb_acceptedRank",
                    "bb_acceptedTaxonomicStatus"
                  ),
                by = c("taxonKey", "bb_key", "bb_acceptedKey")
      ) %>%
      dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
  } else {
    verification <-
      verification %>%
      dplyr::mutate(
        bb_acceptedKey = double(),
        bb_acceptedKingdom = character(),
        bb_acceptedRank = character(),
        bb_acceptedTaxonomicStatus = character()
      ) %>%
      dplyr::select(dplyr::one_of(name_col_verification), name_col_verification_extra)
  }
  message("DONE.", appendLF = TRUE)
  
  # Handle outdated taxa
  message("Detect outdated data...", appendLF = FALSE)
  # Set outdated = FALSE for taxa which are in use:
  # some outdated taxa could be back in use
  if (nrow(verification) > 0) {
    not_outdated_taxa <-
      verification %>%
      dplyr::inner_join(
        taxa %>%
          dplyr::select("taxonKey", "bb_key", "bb_acceptedKey"),
        by = c("taxonKey", "bb_key", "bb_acceptedKey")
      ) %>%
      dplyr::mutate(outdated = FALSE) %>%
      dplyr::mutate(remarks = stringr::str_remove(.data$remarks, "Outdated taxa."))
    # Define the outdated taxa subset
    outdated_taxa <-
      verification %>%
      dplyr::anti_join(taxa, by = c("taxonKey", "bb_key", "bb_acceptedKey"))
    
    # Set outdated = TRUE to all outdated taxa
    outdated_taxa <-
      outdated_taxa %>%
      dplyr::mutate(outdated = TRUE)
    # Compose verification back together
    verification <-
      not_outdated_taxa %>%
      dplyr::bind_rows(outdated_taxa) %>%
      dplyr::select(dplyr::one_of(name_col_verification),
                    name_col_verification_extra
    )
  }
  message("DONE.", appendLF = TRUE)
  
  # Check verificationKey values against GBIF and GBIF Backbone
  message("Check verification keys...", appendLF = FALSE)
  
  verification_keys <- verification %>%
    dplyr::filter(!is.na(.data$verificationKey)) %>%
    dplyr::filter(nchar(.data$verificationKey) > 0) %>%
    dplyr::pull(.data$verificationKey)
  verification_keys <- paste(verification_keys, collapse = ",")
  verification_keys <- unlist(stringr::str_split(verification_keys, ","))
  check_verificationKey <- gbif_verify_keys(verification_keys)
  if (is.null(check_verificationKey)) {
    check_verificationKey <- dplyr::tibble(
      key = double(),
      is_taxonKey = logical(),
      is_from_gbif_backbone = logical(),
      is_synonym = logical()
    )
  }
  message("DONE.", appendLF = TRUE)
  
  # Find taxa duplicates
  message("Find scientific names used in multiple taxa...", appendLF = FALSE)
  if (nrow(verification > 0)) {
    duplicates <-
      verification %>%
      dplyr::filter(!is.na(.data$bb_key) & !is.na(.data$bb_acceptedKey)) %>%
      dplyr::group_by(bb_key, bb_acceptedKey) %>%
      dplyr::count() %>%
      dplyr::filter(.data$n > 1) %>%
      dplyr::left_join((verification %>%
                   dplyr::select("bb_key",
                                 "bb_acceptedKey",
                                 "bb_scientificName")),
                by = c("bb_key", "bb_acceptedKey")
      ) %>%
      dplyr::select(
        .data$bb_key,
        .data$bb_acceptedKey,
        .data$bb_scientificName,
        .data$n
      ) %>%
      dplyr::arrange(dplyr::desc(.data$n)) %>%
      dplyr::ungroup()
  } else {
    duplicates <- dplyr::tibble(
      bb_key = double(),
      bb_acceptedKey = double(),
      bb_scientificName = character(),
      n = double()
    )
  }
  # Retrieve present column names and original ones for later renaming
  name_col_duplicates <-
    names(duplicates)
  name_col_duplicates_original <-
    c(
      verification_bb_key,
      verification_bb_acceptedKey,
      verification_bb_scientificName,
      "n"
    )
  message("DONE.", appendLF = TRUE)
  
  # Order verification by outdated and dateAdded
  verification <-
    verification %>%
    dplyr::arrange(.data$outdated, dplyr::desc(.data$dateAdded))
  
  # Add not outdated taxa from verification to not_to_verify_taxa
  taxa <-
    verification %>%
    dplyr::filter(.data$outdated == FALSE) %>%
    dplyr::select(name_col_taxa, "verificationKey") %>%
    dplyr::left_join(taxa_input,
              by = name_col_taxa
    ) %>%
    dplyr::bind_rows(not_to_verify_taxa)
  # set same order as in input df taxa
  taxa <-
    ordered_taxon_keys %>%
    dplyr::left_join(taxa, by = "taxonKey")
  
  # Split outdated_taxa in outdated_unmatched_taxa and outdated_synonyms
  outdated_unmatched_taxa <-
    outdated_taxa %>%
    dplyr::filter(is.na(.data$bb_key)) %>%
    dplyr::select(dplyr::one_of(name_col_verification),
                  name_col_verification_extra
  )
  outdated_synonyms <-
    outdated_taxa %>%
    dplyr::filter(!is.na(.data$bb_acceptedKey)) %>%
    dplyr::select(dplyr::one_of(name_col_verification),
                  name_col_verification_extra
  )
  
  # Convert to original column names
  taxa <-
    taxa %>%
    dplyr::rename_at(dplyr::vars(name_col_taxa), ~name_col_taxa_original)
  verification <-
    verification %>%
    dplyr::rename_at(
      dplyr::vars(name_col_verification), ~name_col_verification_original
    )
  new_synonyms <-
    new_synonyms %>%
    dplyr::rename_at(
      dplyr::vars(name_col_verification), ~name_col_verification_original
    )
  new_unmatched_taxa <-
    new_unmatched_taxa %>%
    dplyr::rename_at(
      dplyr::vars(name_col_verification), ~name_col_verification_original
    )
  outdated_unmatched_taxa <-
    outdated_unmatched_taxa %>%
    dplyr::rename_at(
      dplyr::vars(name_col_verification), ~name_col_verification_original
    )
  outdated_synonyms <-
    outdated_synonyms %>%
    dplyr::rename_at(
      dplyr::vars(name_col_verification), ~name_col_verification_original
    )
  updated_bb_scientificName_short <-
    updated_bb_scientificName_short %>%
    dplyr::rename_at(
      dplyr::vars(name_col_updated_bb_scientificName_short), 
      ~name_col_updated_bb_scientificName_short_original
    )
  updated_bb_acceptedName_short <-
    updated_bb_acceptedName_short %>%
    dplyr::rename_at(
      dplyr::vars(name_col_updated_bb_acceptedName_short), 
      ~name_col_updated_bb_acceptedName_short_original
    )
  duplicates <-
    duplicates %>%
    dplyr::rename_at(
      dplyr::vars(name_col_duplicates), ~name_col_duplicates_original
    )
  
  return(list(
    taxa = taxa,
    verification = verification,
    info = list(
      new_synonyms = dplyr::as_tibble(new_synonyms),
      new_unmatched_taxa = dplyr::as_tibble(new_unmatched_taxa),
      outdated_unmatched_taxa = dplyr::as_tibble(outdated_unmatched_taxa),
      outdated_synonyms = dplyr::as_tibble(outdated_synonyms),
      updated_bb_scientificName = dplyr::as_tibble(updated_bb_scientificName_short),
      updated_bb_acceptedName = dplyr::as_tibble(updated_bb_acceptedName_short),
      duplicates = duplicates,
      check_verificationKey = check_verificationKey
    )
  ))
}
trias-project/trias documentation built on Sept. 18, 2024, 11:50 a.m.