R/wsi.R

#'
#'
#' Induce senses
#'
#'
#'

wsi <- new.env(parent = .GlobalEnv)

with(wsi, {

  #'
  #' @return a dataframe with similarity values and indexes in modelname
  #' Note: the most similar term to the given term is the term itself
  #'
  vs.similarities <- function(term_or_idx, vsmodel, simfun = senseasim$cos, simfun.name = 'cos') {
    if(is.character(vsmodel))
      vsmodelname <- vsmodel
    else
      vsmodelname <- vsmodel$name

    util$message(sprintf('Preparing similarity values for term \'%s\' and matrix \'%s\'. ', term_or_idx, vsmodelname))

    fname <- cache$get_filename(term_or_idx, '', dirname = cache$data_temp_dir(), prefix = paste0('sim__', vsmodelname, '__', simfun.name, '__'))
    sim <- cache$load(filename = fname, computefun = function() {
      if(is.character(vsmodel))
        vsmodel <- vsm$models[[vsmodel]]()

      if(!is.null(vsmodel$py)){ # get the similarities from fasttext
        util$message('Using fasttext for similarity computation.')
        sim <- vsmodel$py$nearest_neighbors(term_or_idx, 100000) # get the top 100K terms, that should be sufficient
        sim <- c(list(list(term_or_idx, 1.0)), sim)
        sim <- matrix(unlist(sim), ncol=2, byrow = T)
        sim <- data.frame(as.numeric(sim[,2]), stringsAsFactors = F, row.names = sim[,1])
        colnames(sim) <- list('sim')
        sim$idx <- match(rownames(sim), vsmodel$vocab)
      }else{
        # get top n most similar words in terms of
        v <- vsmodel$vector(term_or_idx)
        sim <- sapply(seq_len(length(vsmodel$vocab)), function(i) simfun(vsmodel$vector(i), v))
        # order the result and store the dataframe
        ordr <- order(sim, decreasing = T) # gets also the indexes
        sim <- sim[ordr]
        names(sim) <- lapply(ordr, vsmodel$term)
        sim <- as.data.frame(sim)
        sim$idx <- ordr
      }
      return(sim)
    })
    return(sim)
  }

  #'
  #'
  #'
  vs.similarity.matrix <- function(terms, vsmodel, n = 500, identifier = NULL, simfun = senseasim$cos, simfun.name = 'cos', simfun.issymmetric = T){
    if(is.character(vsmodel))
      vsmodelname <- vsmodel
    else
      vsmodelname <- vsmodel$name

    n <- min(n, if (is.array(terms) || is.data.frame(terms)) nrow(terms) else length(terms))
    terms <- terms[1:n]

    if(is.null(identifier))
      identifier <- digest::digest(terms)

    util$message(sprintf('Preparing similarity matrix of %s terms for \'%s\' based on matrix \'%s\'. ', n, identifier, vsmodelname))

    fname <- cache$get_filename(identifier, '', dirname = cache$data_temp_dir(), prefix = paste0('simmat__', vsmodelname, '__', simfun.name,  '__n', n, '__'))

    SIM <- cache$load(filename = fname, computefun = function() {
      if(is.character(vsmodel))
        vsmodel <- vsm$models[[vsmodel]]()

      M <- vsmodel$vectors(terms)

      if(simfun.issymmetric) {
        i <- seq_len(n-1)
        # compute only lower triangular matrix
        SIM <- as.matrix(sapply(i, function(k) { v_k <- M[k,]; c(rep(NA, k), sapply(seq(k+1,n), function(l) { v_l <- M[l,]; simfun(v_k, v_l) } )) } ))
        diag(SIM) <- 1 # set diagonal entries to 1
        SIM <- cbind(SIM,rep(1,n)) # add last column vector
        SIM[upper.tri(SIM)] <- t(SIM)[upper.tri(SIM)] # copy lower triangle to upper triangle in the right order!
      }else{
        SIM <- as.matrix(sapply(seq_len(n), function(k) { v_k <- M[k,]; sapply(seq_len(n), function(l) { v_l <- M[l,]; simfun(v_k, v_l) } ) } ))
      }
      # set names
      rownames(SIM) <- rownames(M)
      colnames(SIM) <- rownames(SIM)
      return(SIM)
    })
    return(SIM)
  }

  #'
  #' get a similarity graph based on transitivity
  #'
  similarity.graph.transitive <- function(term, vsmodel, n = 200, m = 50, simfun = senseasim$cos, simfun.name = 'cos') {
    if(is.character(vsmodel))
      vsmodelname <- vsmodel
    else
      vsmodelname <- vsmodel$name

    util$message(sprintf('Preparing similarity graph of top %s most similar terms for term \'%s\' and matrix \'%s\' and expand by the top %s most similar terms.', n, term, vsmodelname, m))
    fname <- cache$get_filename(term, '', dirname = cache$data_temp_dir(), prefix = paste0('simgraphtrans__', vsmodelname, '__', simfun.name,  '__n', n, '__m', m, '__'))

    A <- cache$load(filename = fname, computefun = function() {
      if(is.character(vsmodel))
        vsmodel <- vsm$models[[vsmodel]]()

      n <- min(n, length(vsmodel$vocab))
      m <- min(m, length(vsmodel$vocab))

      # get n most simialar terms to term
      sim1 <- wsi$vs.similarities(term, vsmodel, simfun = simfun, simfun.name = simfun.name)
      sim1 <- sim1[1:n,]

      # for each similar word compute top m transitive similarities
      simtrans <- lapply( seq_len(n), function(i) wsi$vs.similarities(sim1[i,]$idx, vsmodel, simfun = simfun, simfun.name = simfun.name)[1:m,] )

      # prepare adjacency matrix, measure intersection of elements in transitive sims
      # TODO: try different values, e.g. average cosine? cosine of average vector?
      A <- matrix(0, nrow = n, ncol =n, dimnames = list(rownames(sim1), rownames(sim1)))
      for(i in seq_len(n)){
        sim_i <- simtrans[[i]]$idx
        for(j in seq_len(n)){
          if(j <= i) {
            if(i == j)
              A[i,j] <- length(sim_i)
            else
              A[i,j] <- A[j,i]
            next
          }
          sim_j <- simtrans[[j]]$idx
          sim_ij <- intersect(sim_i, sim_j)
          A[i,j] <- length(sim_ij)
        }
      }
      return(A)
    })
    return(A)
  }

  #'
  #' induce senses by clustering the similarity matrix
  #'
  induceby.simcluster.jbt <- function(term, POS, jbtmodel, vsmodel, topn.similar.terms = 500, simfun = senseasim$cos, simfun.name = 'cos', simfun.issymmetric = T, thresh = 'median', minsize = 5, cluster.fun = function(X) { clust$mcl(X, remove_self_loops=T, allowsingletons=F) }, cluster.fun.name = 'mcl_noloop_nosingletons'){
    if(is.character(vsmodel))
      vsmodelname <- vsmodel
    else
      vsmodelname <- vsmodel$name

    fname <- cache$get_filename(term, POS, dirname = cache$data_temp_dir(), prefix = paste0('inducedbysimclusterjbt__', jbtmodel$name, '__', vsmodelname, '__', simfun.name,  '__n', topn.similar.terms, '__', thresh, '__', cluster.fun.name, '__'))
    result <- cache$load(filename = fname, computefun = function() {
      sims <- jbtmodel$sim(term=term, POS=POS)
      if(nrow(sims) < 2){
        return(NULL)
      }
      sims <- sims[-c(1),] # the most similar term should be the term itself, remove it
      if(nrow(sims) < 2){
        # no need for clustering only one term
        labels <- list()
        labels[[sims$term[[1]]]] <- 1
        itemlists <- list(list(`1`=sims$term[[1]]))
        result <- list(labels = labels, itemlists = itemlists)
        return(result)
      }
      result <- induceby.simcluster.terms(terms=sims$term, vsmodel=vsmodel, simfun=simfun, simfun.name=simfun.name, simfun.issymmetric=simfun.issymmetric, thresh=thresh, minsize=minsize, cluster.fun=cluster.fun, cluster.fun.name=cluster.fun.name)
      return(result)
    })

    # backoff
    if(is.null(result)){
      util$message(sprintf('Jbtmodel \'%s\' returned no similarity terms for \'%s\'. Using vector space similarities.', jbtmodel$name, term))
      result <- induceby.simcluster.vsm(term=term, vsmodel=vsmodel, topn.similar.terms=topn.similar.terms, simfun=simfun, simfun.name=simfun.name, simfun.issymmetric=simfun.issymmetric, thresh=thresh, minsize=minsize, cluster.fun=cluster.fun, cluster.fun.name=cluster.fun.name)
      return(result)
    }

    if(is.numeric(minsize) && minsize > 1){
      result$itemlists <- Filter(function(l) length(l) >= minsize, result$itemlists)
    }
    return(result)
  }

  induceby.simcluster.jbt.debug <- function(term, POS, jbtmodel, vsmodel, topn.similar.terms = 500, simfun = senseasim$cos, simfun.name = 'cos', simfun.issymmetric = T, thresh = 'median', minsize = 5, cluster.fun = function(X) { clust$mcl(X, remove_self_loops=T, allowsingletons=F) }, cluster.fun.name = 'mcl_noloop_nosingletons', tkplot=F){
    cfun <- function(X) { l<-cluster.fun(X); clust$graph.viz(X, l, labels.as.list=F, tkplot=tkplot); l }
    cfunname <- paste0(cluster.fun.name,'_clustertest_', util$randstring())
    result <- wsi$induceby.simcluster.jbt(term=term, POS=POS, jbtmodel=jbtmodel ,vsmodel=vsmodel, topn.similar.terms=topn.similar.terms, simfun=simfun, simfun.name=simfun.name, simfun.issymmetric=T, thresh=thresh, cluster.fun=cfun, cluster.fun.name=cfunname)
    return(result)
  }

  #'
  #' induce senses by clustering the similarity matrix
  #'
  induceby.simcluster.vsm <- function(term, vsmodel, topn.similar.terms = 500, simfun = senseasim$cos, simfun.name = 'cos', simfun.issymmetric = T, thresh = 'median', minsize = 5, cluster.fun = function(X) { clust$mcl(X, remove_self_loops=T, allowsingletons=F) }, cluster.fun.name = 'mcl_noloop_nosingletons'){
    if(is.character(vsmodel))
      vsmodelname <- vsmodel
    else
      vsmodelname <- vsmodel$name

    fname <- cache$get_filename(term, '', dirname = cache$data_temp_dir(), prefix = paste0('inducedbysimclustervsm__', vsmodelname, '__', simfun.name,  '__n', topn.similar.terms, '__', thresh, '__', cluster.fun.name, '__'))
    result <- cache$load(filename = fname, computefun = function() {
      sims <- vs.similarities(term, vsmodel, simfun = simfun, simfun.name = simfun.name)
      # the most similar term should be the term itself, remove it
      sims <- sims[2:topn.similar.terms+1,]
      result <- induceby.simcluster.terms(terms=rownames(sims), vsmodel=vsmodel, simfun=simfun, simfun.name=simfun.name, simfun.issymmetric=simfun.issymmetric, thresh=thresh, minsize=minsize, cluster.fun=cluster.fun, cluster.fun.name=cluster.fun.name)
      return(result)
    })
    if(is.numeric(minsize) & minsize > 1){
      result$itemlists <- Filter(function(l) length(l) >= minsize, result$itemlists)
    }
    return(result)
  }

  induceby.simcluster.vsm.debug <- function(term, vsmodel, topn.similar.terms = 500, simfun = senseasim$cos, simfun.name = 'cos', simfun.issymmetric = T, thresh = 'median', minsize = 5, cluster.fun = function(X) { clust$mcl(X, remove_self_loops=T, allowsingletons=F) }, cluster.fun.name = 'mcl_noloop_nosingletons', tkplot=F){
    cfun <- function(X) { l<-cluster.fun(X); clust$graph.viz(X, l, labels.as.list=F, tkplot=tkplot); l }
    cfunname <- paste0(cluster.fun.name,'_clustertest_', util$randstring())
    result <- wsi$induceby.simcluster.vsm(term=term, vsmodel=vsmodel, topn.similar.terms=topn.similar.terms, simfun=simfun, simfun.name=simfun.name, simfun.issymmetric=simfun.issymmetric, thresh=thresh, minsize=minsize, cluster.fun=cfun, cluster.fun.name=cfunname)
    return(result)
  }

  #'
  #' induce senses by clustering the similarity matrix of 'terms'
  #'
  induceby.simcluster.terms <- function(terms, vsmodel, simfun = senseasim$cos, simfun.name = 'cos', simfun.issymmetric = T, thresh = 'median', minsize = 5, cluster.fun = function(X) { clust$mcl(X, remove_self_loops=T, allowsingletons=F) }, cluster.fun.name = 'mcl_noloop_nosingletons'){
    if(is.character(vsmodel))
      vsmodelname <- vsmodel
    else
      vsmodelname <- vsmodel$name

    desc <- digest::digest(terms)
    fname <- cache$get_filename(desc, '', dirname = cache$data_temp_dir(), prefix = paste0('inducedbysimclusterterms__', vsmodelname, '__', simfun.name, '__', thresh, '__', cluster.fun.name, '__'))
    result <- cache$load(filename = fname, computefun = function() {
      n <- if (is.array(terms) || is.data.frame(terms)) nrow(terms) else length(terms)
      SIM <- vs.similarity.matrix(terms, vsmodel, n = n, identifier = desc, simfun = simfun, simfun.name = simfun.name, simfun.issymmetric = simfun.issymmetric)
      # prune by threshold, i.e. everything below will be set to zero
      if(is.numeric(thresh)) {
        SIM[which(SIM < thresh)] <- 0
      }
      # else
      if(is.character(thresh)) {
        if(grepl('prune', thresh)) {
          nkeep <- as.numeric(gsub('^.*[.]n([0-9]+).*$', '\\1', thresh))
          symmetric <- grepl('sym', thresh)
          if(grepl('inout', thresh)) {
            SIM <- clust$graph.prune.inout(SIM, nkeep = nkeep, make.symmetric = symmetric)
          } else {
            SIM <- clust$graph.prune(SIM, nkeep = nkeep, make.symmetric = symmetric)
          }
        }
        else { # thresh a function that can be evaluated, such as 'median' or 'mean' and then applied
          threshfun <- eval(parse(text=thresh))
          thresh <- threshfun(SIM)
          SIM[which(SIM < thresh)] <- 0
        }
      }
      # go and cluster the graph
      labels <- cluster.fun(SIM)
      aslists <- clust$as.cluster.lists(labels)
      result <- list(labels = labels, itemlists = aslists, m = SIM)
      return(result)
    })
    if(is.numeric(minsize) & minsize > 1){
      result$itemlists <- Filter(function(l) length(l) >= minsize, result$itemlists)
    }
    return(result)
  }

})
uhh-lt/senseasim documentation built on Feb. 28, 2019, 7:38 p.m.