rpcm <- function(x, method="LA", ZI=FALSE, p=1, Iters=100, Smpl=1000,
Thin=1, a.s=0.234, temp=1e-2, tmax=NULL,
algo="GA", seed=666, Interval=1e-8){
### Start====
set.seed(seed)
#require(LaplacesDemon)
#require(compiler)
#require(parallel)
#require(tidyr)
CPUs = detectCores(all.tests = FALSE, logical = TRUE) - 1
if(CPUs == 0) CPUs = 1
### Convert data to long format====
lonlong <- gather(data.frame(x), "item", "resp", colnames(x), factor_key=TRUE)
data_long <- data.frame(ID=rep(1:nrow(x), times=ncol(x)),lonlong)
### Assemble data list====
if (method == "MAP") {
mon.names <- "LL"
} else { mon.names <- "LP" }
if (p == 1) {
parm.names <- as.parm.names(list( theta=rep(0,nrow(x)),
sigma=rep(0,ncol(x)) ))
pos.theta <- grep("theta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {
theta <- rnorm(Data$n, mean=0, sd=1)
sigma <- rnorm(Data$v, mean=0, sd=1)
return(c(theta, sigma))
}
MyData <- list(parm.names=parm.names, mon.names=mon.names,
PGF=PGF, X=data_long, n=nrow(x), v=ncol(x),
pos.theta=pos.theta, pos.sigma=pos.sigma,
yB={data_long$resp != 0} * 1)
is.data(MyData)
### Model====
if(ZI == T) {
MyData$X$resp[MyData$X$resp == 0] <- NA
MyData$yB[MyData$yB == 1] <- NA
Model <- function(parm, Data){
# Parameters
theta <- parm[grep("theta",Data$parm.names)]
sigma <- parm[grep("sigma",Data$parm.names)]
# Priors
TP <- sum(dnorm(theta, 0, 1, log=T))
SP <- sum(dnorm(sigma, 0, 1, log=T))
Lpp <- TP + SP
# Likelihood
thetaLL <- rep(theta, times=Data$v)
sigmaLL <- rep(sigma, each= Data$n)
mu <- exp(thetaLL + sigmaLL)
IRF <- plogis(log(mu))
IRF[which(IRF == 0)] <- 1e-7
IRF[which(IRF == 1)] <- 1 - 1e-7
LLB <- sum( dbinom(Data$yB, 1, IRF, log=T), na.rm=T )
LL <- sum( dpois(Data$X$resp, lambda=mu, log=T), na.rm=T )
### Log-Posterior
LP <- LL + LLB + Lpp
### Estimates
bin <- qbinom(rep(.5, length(mu)), size=1, prob=IRF)
yhat <- qpois(rep(.5, length(mu)), mu) * bin
### Output
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yhat, parm=parm)
return(Modelout)
}
} else if (ZI == F) {
Model <- function(parm, Data){
# Parameters
theta <- parm[grep("theta",Data$parm.names)]
sigma <- parm[grep("sigma",Data$parm.names)]
# Priors
TP <- sum(dnorm(theta, 0, 1, log=T))
SP <- sum(dnorm(sigma, 0, 1, log=T))
Lpp <- TP + SP
# Likelihood
thetaLL <- rep(theta, times=Data$v)
sigmaLL <- rep(sigma, each= Data$n)
mu <- exp(thetaLL + sigmaLL)
LL <- sum( dpois(Data$X$resp, lambda=mu, log=T), na.rm=T )
### Log-Posterior
LP <- LL + Lpp
### Estimates
yhat <- qpois(rep(.5, length(mu)), mu)
### Output
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yhat, parm=parm)
return(Modelout)
}
} else {stop("Unknown model. ZI should be equal TRUE or FALSE (see documentation).")}
} else if(p == 2) {
parm.names <- as.parm.names(list( theta=rep(0,nrow(x)),
sigma=rep(0,ncol(x)),
alpha=rep(0,ncol(x)) ))
pos.theta <- grep("theta", parm.names)
pos.sigma <- grep("sigma", parm.names)
pos.alpha <- grep("alpha", parm.names)
PGF <- function(Data) {
theta <- rnorm(Data$n, mean=0, sd=1)
sigma <- rnorm(Data$v, mean=0, sd=1)
alpha <- rep(0, Data$v)
return(c(theta, sigma, alpha))
}
MyData <- list(parm.names=parm.names, mon.names=mon.names,
PGF=PGF, X=data_long, n=nrow(x), v=ncol(x),
pos.theta=pos.theta, pos.sigma=pos.sigma,
pos.alpha=pos.alpha, yB={data_long$resp != 0} * 1)
is.data(MyData)
### Model====
if (ZI == T) {
MyData$X$resp[MyData$X$resp == 0] <- NA
MyData$yB[MyData$yB == 1] <- NA
Model <- function(parm, Data){
# Parameters
theta <- parm[grep("theta",Data$parm.names)]
sigma <- parm[grep("sigma",Data$parm.names)]
alpha <- exp(parm[grep("alpha",Data$parm.names)])
# Priors
TP <- sum(dnorm(theta, 0, 1, log=T))
SP <- sum(dnorm(sigma, 0, 1, log=T))
AP <- sum(dlnorm(alpha, 0, 1, log=T))
Lpp <- TP + SP + AP
# Likelihood
thetaLL <- rep(theta, times=Data$v)
sigmaLL <- rep(sigma, each= Data$n)
alphaLL <- rep(alpha, each= Data$n)
mu <- exp(alphaLL * {thetaLL + sigmaLL})
IRF <- plogis(log(mu))
IRF[which(IRF == 0)] <- 1e-7
IRF[which(IRF == 1)] <- 1 - 1e-7
LLB <- sum( dbinom(Data$yB, 1, IRF, log=T), na.rm=T )
LL <- sum( dpois(Data$X$resp, lambda=mu, log=T), na.rm=T )
### Log-Posterior
LP <- LL + LLB + Lpp
### Estimates
bin <- qbinom(rep(.5, length(mu)), size=1, prob=IRF)
yhat <- qpois(rep(.5, length(mu)), mu) * bin
### Output
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yhat, parm=parm)
return(Modelout)
}
} else if (ZI == F) {
Model <- function(parm, Data){
# Parameters
theta <- parm[grep("theta",Data$parm.names)]
sigma <- parm[grep("sigma",Data$parm.names)]
alpha <- exp(parm[grep("alpha",Data$parm.names)])
# Priors
TP <- sum(dnorm(theta, 0, 1, log=T))
SP <- sum(dnorm(sigma, 0, 1, log=T))
AP <- sum(dlnorm(alpha, 0, 1, log=T))
Lpp <- TP + SP + AP
# Likelihood
thetaLL <- rep(theta, times=Data$v)
sigmaLL <- rep(sigma, each= Data$n)
alphaLL <- rep(alpha, each= Data$n)
mu <- exp(alphaLL * {thetaLL + sigmaLL})
LL <- sum( dpois(Data$X$resp, lambda=mu, log=T), na.rm=T )
### Log-Posterior
LP <- LL + Lpp
### Estimates
yhat <- qpois(rep(.5, length(mu)), mu)
### Output
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yhat, parm=parm)
return(Modelout)
}
} else {stop("Unknown model. ZI should be equal TRUE or FALSE (see documentation).")}
} else {stop("Unknown model. p should be equal to 1 or 2 (see documentation).")}
Model <- compiler::cmpfun(Model)
Initial.Values <- GIV(Model, MyData, PGF=T)
is.model(Model, Initial.Values, MyData)
is.bayesian(Model, Initial.Values, MyData)
### Run!====
if (method=="VB") {
Iters=Iters; Smpl=Smpl
Fit <- VariationalBayes(Model=Model, parm=Initial.Values, Data=MyData,
Covar=NULL, Interval=1e-6, Iterations=Iters,
Method="Salimans2", Samples=Smpl, sir=TRUE,
Stop.Tolerance=1e-5, CPUs=CPUs, Type="PSOCK")
} else if (method=="LA") {
Iters=Iters; Smpl=Smpl
Fit <- LaplaceApproximation(Model, parm=Initial.Values, Data=MyData,
Interval=1e-6, Iterations=Iters,
Method="SPG", Samples=Smpl, sir=TRUE,
CovEst="Identity", Stop.Tolerance=1e-5,
CPUs=CPUs, Type="PSOCK")
} else if (method=="MCMC") {
## Hit-And-Run Metropolis
Iters=Iters; Status=Iters/10; Thin=Thin; A=a.s
Fit <- LaplacesDemon(Model=Model, Data=MyData,
Initial.Values=Initial.Values,
Covar=NULL, Iterations=Iters,
Status=Status, Thinning=Thin,
Algorithm="HARM",
Specs=list(alpha.star=A, B=NULL))
} else if (method=="PMC") {
Iters=Iters; Smpl=Smpl; Thin=Thin
Fit <- PMC(Model=Model, Data=MyData, Initial.Values=Initial.Values,
Covar=NULL, Iterations=Iters, Thinning=Thin, alpha=NULL,
M=2, N=Smpl, nu=1e3, CPUs=CPUs, Type="PSOCK")
} else if (method=="IQ") {
Iters=Iters; Smpl=Smpl
Fit <- IterativeQuadrature(Model=Model, parm=Initial.Values,
Data=MyData, Covar=NULL,
Iterations=Iters, Algorithm="CAGH",
Specs=list(N=3, Nmax=10, Packages=NULL,
Dyn.libs=NULL),
Samples=Smpl, sir=T,
Stop.Tolerance=c(1e-5,1e-15),
Type="PSOCK", CPUs=CPUs)
} else if (method=="MAP") {
## Maximum a Posteriori====
#Iters=100; Smpl=1000
Iters=Iters; Status=Iters/10
Fit <- MAP(Model=Model, parm=Initial.Values, Data=MyData, algo=algo, seed=seed,
maxit=Iters, temp=temp, tmax=tmax, REPORT=Status, Interval=Interval)
} else {stop('Unknown optimization method.')}
### Results====
if (method=="MAP") {
abil = Fit[["Model"]]$parm[pos.theta]
diff = Fit[["Model"]]$parm[pos.sigma]
if(p == 2) disc = exp(Fit[["Model"]]$parm[pos.alpha])
FI = Fit$FI
if(p == 1) {
Results <- list("Data"=MyData,"Fit"=Fit,"Model"=Model,
'abil'=abil,'diff'=diff,'FitIndexes'=FI)
} else {
Results <- list("Data"=MyData,"Fit"=Fit,"Model"=Model,
'abil'=abil,'diff'=diff,'disc'=disc,
'FitIndexes'=FI)
}
} else {
if (method=="PMC") {
abil = Fit$Summary[grep("theta", rownames(Fit$Summary), fixed=TRUE),1]
diff = Fit$Summary[grep("sigma", rownames(Fit$Summary), fixed=TRUE),1]
if(p == 2) disc = exp(Fit$Summary[grep("alpha", rownames(Fit$Summary), fixed=TRUE),1])
} else {
abil = Fit$Summary1[grep("theta", rownames(Fit$Summary1), fixed=TRUE),1]
diff = Fit$Summary1[grep("sigma", rownames(Fit$Summary1), fixed=TRUE),1]
if(p == 2) disc = exp(Fit$Summary1[grep("alpha", rownames(Fit$Summary1), fixed=TRUE),1])
}
Dev <- Fit$Deviance
mDD <- Dev - min(Dev)
pDD <- Dev[min(which(mDD < 100)):length(Dev)]
pV <- var(pDD)/2
Dbar <- mean(pDD)
#Dbar = mean(Dev)
#pV <- var(Dev)/2
DIC = list(DIC=Dbar + pV, Dbar=Dbar, pV=pV)
if (p == 1) {
Results <- list("Data"=MyData,"Fit"=Fit,"Model"=Model,
'abil'=abil,'diff'=diff,'DIC'=DIC)
} else {
Results <- list("Data"=MyData,"Fit"=Fit,"Model"=Model,
'abil'=abil,'diff'=diff,'disc'=disc,
'DIC'=DIC)
}
}
return(Results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.