#' Ancestry-Informed STAAR procedure using omnibus test
#'
#' The \code{AI-STAAR} function takes in genotype, the object from fitting the null
#' model, and functional annotation data to analyze the association between a
#' quantitative/dichotomous phenotype and a variant-set by using an ancestry-informed STAAR procedure.
#' For each variant-set, the ancestry-informed STAAR-O p-value is a p-value from an omnibus test
#' that aggregated SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25),
#' and ACAT-V(1,1) together with p-values of each test weighted by each annotation
#' using Cauchy method, across an user-defined number of base tests. The p-values from each base test
#' are weighted by ancestry-specific ensemble weights estimated independently from the data.
#' @param genotype an n*p genotype matrix (dosage matrix) of the target sequence,
#' where n is the sample size and p is the number of genetic variants.
#' @param obj_nullmodel an object from fitting the null model, which is the
#' output from either \code{\link{fit_null_glm}} function for unrelated samples or
#' \code{\link{fit_null_glmmkin}} function for related samples. Note that \code{\link{fit_null_glmmkin}}
#' is a wrapper of the \code{\link{glmmkin}} function from the \code{\link{GMMAT}} package.
#' @param annotation_phred a data frame or matrix of functional annotation data
#' of dimension p*q (or a vector of a single annotation score with length p).
#' Continuous scores should be given in PHRED score scale, where the PHRED score
#' of j-th variant is defined to be -10*log10(rank(-score_j)/total) across the genome. (Binary)
#' categorical scores should be taking values 0 or 1, where 1 is functional and 0 is
#' non-functional. If not provided, STAAR will perform the
#' SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), ACAT-V(1,1)
#' and ACAT-O tests (default = NULL).
#' @param rare_maf_cutoff the cutoff of maximum minor allele frequency in
#' defining rare variants (default = 0.01).
#' @param rv_num_cutoff the cutoff of minimum number of variants of analyzing
#' a given variant-set (default = 2).
#' @param rv_num_cutoff_max the cutoff of maximum number of variants of analyzing
#' a given variant-set (default = 1e+09).
#' @param find_weight logical: should the ancestry group-specific weights and weighting scenario-specific p-values for each base test be saved as output (default = FALSE).
#' @return A list with the following members:
#' @return \code{num_variant}: the number of variants with minor allele frequency > 0 and less than
#' \code{rare_maf_cutoff} in the given variant-set that are used for performing the
#' variant-set using STAAR.
#' @return \code{cMAC}: the cumulative minor allele count of variants with
#' minor allele frequency > 0 and less than \code{rare_maf_cutoff} in the given variant-set.
#' @return \code{RV_label}: the boolean vector indicating whether each variant in the given
#' variant-set has minor allele frequency > 0 and less than \code{rare_maf_cutoff}.
#' @return \code{results_STAAR_O}: the STAAR-O p-value that aggregated SKAT(1,25),
#' SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) together
#' with p-values of each test weighted by each annotation using Cauchy method.
#' @return \code{results_ACAT_O}: the ACAT-O p-value that aggregated SKAT(1,25),
#' SKAT(1,1), Burden(1,25), Burden(1,1), ACAT-V(1,25), and ACAT-V(1,1) using Cauchy method.
#' @return \code{results_STAAR_S_1_25}: a vector of STAAR-S(1,25) p-values,
#' including SKAT(1,25) p-value weighted by MAF, the SKAT(1,25)
#' p-values weighted by each annotation, and a STAAR-S(1,25)
#' p-value by aggregating these p-values using Cauchy method.
#' @return \code{results_STAAR_S_1_1}: a vector of STAAR-S(1,1) p-values,
#' including SKAT(1,1) p-value weighted by MAF, the SKAT(1,1)
#' p-values weighted by each annotation, and a STAAR-S(1,1)
#' p-value by aggregating these p-values using Cauchy method.
#' @return \code{results_STAAR_B_1_25}: a vector of STAAR-B(1,25) p-values,
#' including Burden(1,25) p-value weighted by MAF, the Burden(1,25)
#' p-values weighted by each annotation, and a STAAR-B(1,25)
#' p-value by aggregating these p-values using Cauchy method.
#' @return \code{results_STAAR_B_1_1}: a vector of STAAR-B(1,1) p-values,
#' including Burden(1,1) p-value weighted by MAF, the Burden(1,1)
#' p-values weighted by each annotation, and a STAAR-B(1,1)
#' p-value by aggregating these p-values using Cauchy method.
#' @return \code{results_STAAR_A_1_25}: a vector of STAAR-A(1,25) p-values,
#' including ACAT-V(1,25) p-value weighted by MAF, the ACAT-V(1,25)
#' p-values weighted by each annotation, and a STAAR-A(1,25)
#' p-value by aggregating these p-values using Cauchy method.
#' @return \code{results_STAAR_A_1_1}: a vector of STAAR-A(1,1) p-values,
#' including ACAT-V(1,1) p-value weighted by MAF, the ACAT-V(1,1)
#' p-values weighted by each annotation, and a STAAR-A(1,1)
#' p-value by aggregating these p-values using Cauchy method.
#' @return \code{weight_all_1}: a matrix of ancestry-specific weights across
#' \code{B} base tests for scenario 1 (if \code{find_weight} = TRUE).
#' @return \code{weight_all_2}: a matrix of ancestry-specific weights across
#' \code{B} base tests for scenario 2 (if \code{find_weight} = TRUE).
#' @return \code{results_weight}: a list of p-values weighted by
#' MAF, annotations, with aggregated components across \code{B} base tests. The p-values
#' from each base test are combined across weighting scenarios 1 and 2 using Cauchy method
#' (if \code{find_weight} = TRUE).
#' @return \code{results_weight1}: a list of p-values weighted by
#' MAF, annotations, with aggregated components across \code{B} base tests. The p-values
#' from each base test correspond to weighting scenario 1 (if \code{find_weight} = TRUE).
#' @return \code{results_weight2}: a list of p-values weighted by
#' MAF, annotations, with aggregated components across \code{B} base tests. The p-values
#' from each base test correspond to weighting scenario 2 (if \code{find_weight} = TRUE).
#' @references Li, X., Li, Z., et al. (2020). Dynamic incorporation of multiple
#' in silico functional annotations empowers rare variant association analysis of
#' large whole-genome sequencing studies at scale. \emph{Nature Genetics}, \emph{52}(9), 969-983.
#' (\href{https://doi.org/10.1038/s41588-020-0676-4}{pub})
#' @references Li, Z., Li, X., et al. (2022). A framework for detecting
#' noncoding rare-variant associations of large-scale whole-genome sequencing
#' studies. \emph{Nature Methods}, \emph{19}(12), 1599-1611.
#' (\href{https://doi.org/10.1038/s41592-022-01640-x}{pub})
#' @references Liu, Y., et al. (2019). Acat: A fast and powerful p value combination
#' method for rare-variant analysis in sequencing studies.
#' \emph{The American Journal of Human Genetics}, \emph{104}(3), 410-421.
#' (\href{https://doi.org/10.1016/j.ajhg.2019.01.002}{pub})
#' @references Li, Z., Li, X., et al. (2020). Dynamic scan procedure for
#' detecting rare-variant association regions in whole-genome sequencing studies.
#' \emph{The American Journal of Human Genetics}, \emph{104}(5), 802-814.
#' (\href{https://doi.org/10.1016/j.ajhg.2019.03.002}{pub})
#' @export
AI_STAAR <- function(genotype,obj_nullmodel,annotation_phred=NULL,
rare_maf_cutoff=0.01,rv_num_cutoff=2,
rv_num_cutoff_max=1e9, find_weight=FALSE){
if(!inherits(genotype, "matrix") && !inherits(genotype, "Matrix")){
stop("genotype is not a matrix!")
}
if(dim(genotype)[2] == 1){
stop(paste0("Number of rare variant in the set is less than 2!"))
}
annotation_phred <- as.data.frame(annotation_phred)
if(dim(annotation_phred)[1] != 0 & dim(genotype)[2] != dim(annotation_phred)[1]){
stop(paste0("Dimensions don't match for genotype and annotation!"))
}
if(inherits(genotype, "sparseMatrix")){
genotype <- as.matrix(genotype)
}
genotype <- matrix_flip(genotype)
genotype_ref <- genotype
MAF <- genotype$MAF
RV_label <- as.vector((MAF<rare_maf_cutoff)&(MAF>0))
Geno_rare <- genotype$Geno[,RV_label]
rm(genotype)
gc()
annotation_phred <- annotation_phred[RV_label,,drop=FALSE]
if(sum(RV_label) >= rv_num_cutoff_max){
stop(paste0("Number of rare variant in the set is more than ",rv_num_cutoff_max,"!"))
}
B <- dim(obj_nullmodel$pop_weights_1_1)[2]
weight_all_1 <- weight_all_2 <- vector("list", B)
pvalues_1_tot <- pvalues_2_tot <- vector("list", B)
n_pop <- length(unique(obj_nullmodel$pop.groups))
pop <- obj_nullmodel$pop.groups
indices <- list()
a_p <- matrix(0, nrow = 1, ncol = n_pop)
for(i in 1:n_pop){
eth <- unique(pop)[i]
indices[[i]] <- which(pop %in% eth)
a_p[,i] <- mean(apply(as.matrix(Geno_rare[indices[[i]],]), 2, function(x){
min(mean(x)/2, 1-mean(x)/2)}))
}
a_p <- ifelse(a_p > 0, dbeta(a_p,1,25), a_p)
w_b_1 <- w_b_2 <- matrix(0, nrow = 1, ncol = n_pop)
if(sum(RV_label) >= rv_num_cutoff){
for(b in 1:B){
genotype <- genotype_ref
MAF <- genotype$MAF
w_b_1 <- obj_nullmodel$pop_weights_1_1[,b]
w_b_2 <- t(a_p%*%diag(obj_nullmodel$pop_weights_1_25[,b]))
if(find_weight == T){
weight_all_1[[b]] <- w_b_1
weight_all_2[[b]] <- w_b_2
}
Geno_rare_1 <- Geno_rare_2 <- Geno_rare
for(i in 1:length(w_b_1)){
eth <- unique(pop)[i]
eth_wt_1 <- w_b_1[i]
eth_wt_2 <- w_b_2[i]
Geno_rare_1[indices[[i]],] <- eth_wt_1*Geno_rare[indices[[i]],]
Geno_rare_2[indices[[i]],] <- eth_wt_2*Geno_rare[indices[[i]],]
}
G1 <- as(Geno_rare_1,"dgCMatrix")
G2 <- as(Geno_rare_2,"dgCMatrix")
G <- as(Geno_rare,"dgCMatrix")
MAF <- MAF[RV_label]
annotation_rank <- 1 - 10^(-annotation_phred/10)
## beta(1,25)
w_1 <- dbeta(MAF,1,25)
## beta(1,1)
w_2 <- dbeta(MAF,1,1)
if(dim(annotation_phred)[2] == 0){
## Burden, SKAT, ACAT-V
w_B <- w_S <- as.matrix(cbind(w_1,w_2))
w_A <- as.matrix(cbind(w_1^2/dbeta(MAF,0.5,0.5)^2,w_2^2/dbeta(MAF,0.5,0.5)^2))
}else{
## Burden
w_B_1 <- annotation_rank*w_1
w_B_1 <- cbind(w_1,w_B_1)
w_B_2 <- annotation_rank*w_2
w_B_2 <- cbind(w_2,w_B_2)
w_B <- cbind(w_B_1,w_B_2)
w_B <- as.matrix(w_B)
## SKAT
w_S_1 <- sqrt(annotation_rank)*w_1
w_S_1 <- cbind(w_1,w_S_1)
w_S_2 <- sqrt(annotation_rank)*w_2
w_S_2 <- cbind(w_2,w_S_2)
w_S <- cbind(w_S_1,w_S_2)
w_S <- as.matrix(w_S)
## ACAT-V
w_A_1 <- annotation_rank*w_1^2/dbeta(MAF,0.5,0.5)^2
w_A_1 <- cbind(w_1^2/dbeta(MAF,0.5,0.5)^2,w_A_1)
w_A_2 <- annotation_rank*w_2^2/dbeta(MAF,0.5,0.5)^2
w_A_2 <- cbind(w_2^2/dbeta(MAF,0.5,0.5)^2,w_A_2)
w_A <- cbind(w_A_1,w_A_2)
w_A <- as.matrix(w_A)
}
if(obj_nullmodel$relatedness){
if(!obj_nullmodel$sparse_kins){
P <- obj_nullmodel$P
residuals.phenotype <- obj_nullmodel$scaled.residuals
pvalues_1 <- STAAR_O_SMMAT(G1,P,residuals.phenotype,
weights_B=w_B,weights_S=w_S,weights_A=w_A,
mac=as.integer(round(MAF*2*dim(G1)[1])))
pvalues_2 <- STAAR_O_SMMAT(G2,P,residuals.phenotype,
weights_B=w_B,weights_S=w_S,weights_A=w_A,
mac=as.integer(round(MAF*2*dim(G2)[1])))
}else{
Sigma_i <- obj_nullmodel$Sigma_i
Sigma_iX <- as.matrix(obj_nullmodel$Sigma_iX)
cov <- obj_nullmodel$cov
residuals.phenotype <- obj_nullmodel$scaled.residuals
pvalues_1 <- STAAR_O_SMMAT_sparse(G1,Sigma_i,Sigma_iX,cov,residuals.phenotype,
weights_B=w_B,weights_S=w_S,weights_A=w_A,
mac=as.integer(round(MAF*2*dim(G1)[1])))
pvalues_2 <- STAAR_O_SMMAT_sparse(G2,Sigma_i,Sigma_iX,cov,residuals.phenotype,
weights_B=w_B,weights_S=w_S,weights_A=w_A,
mac=as.integer(round(MAF*2*dim(G2)[1])))
}
}else{
X <- model.matrix(obj_nullmodel)
working <- obj_nullmodel$weights
sigma <- sqrt(summary(obj_nullmodel)$dispersion)
if(obj_nullmodel$family[1] == "binomial"){
fam <- 1
}else if(obj_nullmodel$family[1] == "gaussian"){
fam <- 0
}
residuals.phenotype <- obj_nullmodel$y - obj_nullmodel$fitted.values
pvalues_1 <- STAAR_O(G1,X,working,sigma,fam,residuals.phenotype,
weights_B=w_B,weights_S=w_S,weights_A=w_A,
mac=as.integer(round(MAF*2*dim(G1)[1])))
pvalues_2 <- STAAR_O(G2,X,working,sigma,fam,residuals.phenotype,
weights_B=w_B,weights_S=w_S,weights_A=w_A,
mac=as.integer(round(MAF*2*dim(G2)[1])))
}
pvalues_1_tot[[b]] <- pvalues_1
pvalues_2_tot[[b]] <- pvalues_2
}
pvalues_1_tot <- do.call(cbind, pvalues_1_tot)
pvalues_2_tot <- do.call(cbind, pvalues_2_tot)
pvalues_tot <- cbind(pvalues_1_tot,pvalues_2_tot)
pvalues_aggregate <- apply(pvalues_tot,1,function(x){CCT(x)})
weight_all_1 <- do.call(cbind, weight_all_1)
weight_all_2 <- do.call(cbind, weight_all_2)
num_variant <- sum(RV_label) #dim(G)[2]
cMAC <- sum(G)
num_annotation <- dim(annotation_phred)[2]+1
if(find_weight == TRUE){
pvalues_aggregate_weight <- NULL
results_weight <- results_weight1 <- results_weight2 <- NULL
for(i in 1:B){
#combine p-values across 2 scenarios for each b, to obtain B+1 sets of p-values
pvalues_aggregate_weight <- cbind(pvalues_aggregate_weight,apply(pvalues_tot[,c(i,i+B)],1,
function(x){CCT(x)}))
}
for(i in 1:B){
## Combined p-values across 2 scenarios ##
results_STAAR_O <- CCT(pvalues_aggregate_weight[,i])
results_ACAT_O <- CCT(pvalues_aggregate_weight[,i][c(1,num_annotation+1,2*num_annotation+1,3*num_annotation+1,4*num_annotation+1,5*num_annotation+1)])
pvalues_STAAR_S_1_25 <- CCT(pvalues_aggregate_weight[,i][1:num_annotation])
pvalues_STAAR_S_1_1 <- CCT(pvalues_aggregate_weight[,i][(num_annotation+1):(2*num_annotation)])
pvalues_STAAR_B_1_25 <- CCT(pvalues_aggregate_weight[,i][(2*num_annotation+1):(3*num_annotation)])
pvalues_STAAR_B_1_1 <- CCT(pvalues_aggregate_weight[,i][(3*num_annotation+1):(4*num_annotation)])
pvalues_STAAR_A_1_25 <- CCT(pvalues_aggregate_weight[,i][(4*num_annotation+1):(5*num_annotation)])
pvalues_STAAR_A_1_1 <- CCT(pvalues_aggregate_weight[,i][(5*num_annotation+1):(6*num_annotation)])
results_STAAR_S_1_25 <- c(pvalues_aggregate_weight[,i][1:num_annotation],pvalues_STAAR_S_1_25)
results_STAAR_S_1_25 <- data.frame(t(results_STAAR_S_1_25))
results_STAAR_S_1_1 <- c(pvalues_aggregate_weight[,i][(num_annotation+1):(2*num_annotation)],pvalues_STAAR_S_1_1)
results_STAAR_S_1_1 <- data.frame(t(results_STAAR_S_1_1))
results_STAAR_B_1_25 <- c(pvalues_aggregate_weight[,i][(2*num_annotation+1):(3*num_annotation)],pvalues_STAAR_B_1_25)
results_STAAR_B_1_25 <- data.frame(t(results_STAAR_B_1_25))
results_STAAR_B_1_1 <- c(pvalues_aggregate_weight[,i][(3*num_annotation+1):(4*num_annotation)],pvalues_STAAR_B_1_1)
results_STAAR_B_1_1 <- data.frame(t(results_STAAR_B_1_1))
results_STAAR_A_1_25 <- c(pvalues_aggregate_weight[,i][(4*num_annotation+1):(5*num_annotation)],pvalues_STAAR_A_1_25)
results_STAAR_A_1_25 <- data.frame(t(results_STAAR_A_1_25))
results_STAAR_A_1_1 <- c(pvalues_aggregate_weight[,i][(5*num_annotation+1):(6*num_annotation)],pvalues_STAAR_A_1_1)
results_STAAR_A_1_1 <- data.frame(t(results_STAAR_A_1_1))
colnames(results_STAAR_S_1_25) <- c("SKAT(1,25)",
paste0("SKAT(1,25)-",colnames(annotation_phred)),
"STAAR-S(1,25)")
colnames(results_STAAR_S_1_1) <- c("SKAT(1,1)",
paste0("SKAT(1,1)-",colnames(annotation_phred)),
"STAAR-S(1,1)")
colnames(results_STAAR_B_1_25) <- c("Burden(1,25)",
paste0("Burden(1,25)-",colnames(annotation_phred)),
"STAAR-B(1,25)")
colnames(results_STAAR_B_1_1) <- c("Burden(1,1)",
paste0("Burden(1,1)-",colnames(annotation_phred)),
"STAAR-B(1,1)")
colnames(results_STAAR_A_1_25) <- c("ACAT-V(1,25)",
paste0("ACAT-V(1,25)-",colnames(annotation_phred)),
"STAAR-A(1,25)")
colnames(results_STAAR_A_1_1) <- c("ACAT-V(1,1)",
paste0("ACAT-V(1,1)-",colnames(annotation_phred)),
"STAAR-A(1,1)")
results_weight <- cbind(results_weight, c(num_variant = num_variant,
cMAC = cMAC,
results_STAAR_O = results_STAAR_O,
results_ACAT_O = results_ACAT_O,
results_STAAR_S_1_25 = results_STAAR_S_1_25,
results_STAAR_S_1_1 = results_STAAR_S_1_1,
results_STAAR_B_1_25 = results_STAAR_B_1_25,
results_STAAR_B_1_1 = results_STAAR_B_1_1,
results_STAAR_A_1_25 = results_STAAR_A_1_25,
results_STAAR_A_1_1 = results_STAAR_A_1_1))
## Scenario 1 p-values ##
results_STAAR_O <- CCT(pvalues_1_tot[,i])
results_ACAT_O <- CCT(pvalues_1_tot[,i][c(1,num_annotation+1,2*num_annotation+1,3*num_annotation+1,4*num_annotation+1,5*num_annotation+1)])
pvalues_STAAR_S_1_25 <- CCT(pvalues_1_tot[,i][1:num_annotation])
pvalues_STAAR_S_1_1 <- CCT(pvalues_1_tot[,i][(num_annotation+1):(2*num_annotation)])
pvalues_STAAR_B_1_25 <- CCT(pvalues_1_tot[,i][(2*num_annotation+1):(3*num_annotation)])
pvalues_STAAR_B_1_1 <- CCT(pvalues_1_tot[,i][(3*num_annotation+1):(4*num_annotation)])
pvalues_STAAR_A_1_25 <- CCT(pvalues_1_tot[,i][(4*num_annotation+1):(5*num_annotation)])
pvalues_STAAR_A_1_1 <- CCT(pvalues_1_tot[,i][(5*num_annotation+1):(6*num_annotation)])
results_STAAR_S_1_25 <- c(pvalues_1_tot[,i][1:num_annotation],pvalues_STAAR_S_1_25)
results_STAAR_S_1_25 <- data.frame(t(results_STAAR_S_1_25))
results_STAAR_S_1_1 <- c(pvalues_1_tot[,i][(num_annotation+1):(2*num_annotation)],pvalues_STAAR_S_1_1)
results_STAAR_S_1_1 <- data.frame(t(results_STAAR_S_1_1))
results_STAAR_B_1_25 <- c(pvalues_1_tot[,i][(2*num_annotation+1):(3*num_annotation)],pvalues_STAAR_B_1_25)
results_STAAR_B_1_25 <- data.frame(t(results_STAAR_B_1_25))
results_STAAR_B_1_1 <- c(pvalues_1_tot[,i][(3*num_annotation+1):(4*num_annotation)],pvalues_STAAR_B_1_1)
results_STAAR_B_1_1 <- data.frame(t(results_STAAR_B_1_1))
results_STAAR_A_1_25 <- c(pvalues_1_tot[,i][(4*num_annotation+1):(5*num_annotation)],pvalues_STAAR_A_1_25)
results_STAAR_A_1_25 <- data.frame(t(results_STAAR_A_1_25))
results_STAAR_A_1_1 <- c(pvalues_1_tot[,i][(5*num_annotation+1):(6*num_annotation)],pvalues_STAAR_A_1_1)
results_STAAR_A_1_1 <- data.frame(t(results_STAAR_A_1_1))
colnames(results_STAAR_S_1_25) <- c("SKAT(1,25)",
paste0("SKAT(1,25)-",colnames(annotation_phred)),
"STAAR-S(1,25)")
colnames(results_STAAR_S_1_1) <- c("SKAT(1,1)",
paste0("SKAT(1,1)-",colnames(annotation_phred)),
"STAAR-S(1,1)")
colnames(results_STAAR_B_1_25) <- c("Burden(1,25)",
paste0("Burden(1,25)-",colnames(annotation_phred)),
"STAAR-B(1,25)")
colnames(results_STAAR_B_1_1) <- c("Burden(1,1)",
paste0("Burden(1,1)-",colnames(annotation_phred)),
"STAAR-B(1,1)")
colnames(results_STAAR_A_1_25) <- c("ACAT-V(1,25)",
paste0("ACAT-V(1,25)-",colnames(annotation_phred)),
"STAAR-A(1,25)")
colnames(results_STAAR_A_1_1) <- c("ACAT-V(1,1)",
paste0("ACAT-V(1,1)-",colnames(annotation_phred)),
"STAAR-A(1,1)")
results_weight1 <- cbind(results_weight1, c(num_variant = num_variant,
cMAC = cMAC,
results_STAAR_O = results_STAAR_O,
results_ACAT_O = results_ACAT_O,
results_STAAR_S_1_25 = results_STAAR_S_1_25,
results_STAAR_S_1_1 = results_STAAR_S_1_1,
results_STAAR_B_1_25 = results_STAAR_B_1_25,
results_STAAR_B_1_1 = results_STAAR_B_1_1,
results_STAAR_A_1_25 = results_STAAR_A_1_25,
results_STAAR_A_1_1 = results_STAAR_A_1_1))
## Scenario 2 p-values ##
results_STAAR_O <- CCT(pvalues_2_tot[,i])
results_ACAT_O <- CCT(pvalues_2_tot[,i][c(1,num_annotation+1,2*num_annotation+1,3*num_annotation+1,4*num_annotation+1,5*num_annotation+1)])
pvalues_STAAR_S_1_25 <- CCT(pvalues_2_tot[,i][1:num_annotation])
pvalues_STAAR_S_1_1 <- CCT(pvalues_2_tot[,i][(num_annotation+1):(2*num_annotation)])
pvalues_STAAR_B_1_25 <- CCT(pvalues_2_tot[,i][(2*num_annotation+1):(3*num_annotation)])
pvalues_STAAR_B_1_1 <- CCT(pvalues_2_tot[,i][(3*num_annotation+1):(4*num_annotation)])
pvalues_STAAR_A_1_25 <- CCT(pvalues_2_tot[,i][(4*num_annotation+1):(5*num_annotation)])
pvalues_STAAR_A_1_1 <- CCT(pvalues_2_tot[,i][(5*num_annotation+1):(6*num_annotation)])
results_STAAR_S_1_25 <- c(pvalues_2_tot[,i][1:num_annotation],pvalues_STAAR_S_1_25)
results_STAAR_S_1_25 <- data.frame(t(results_STAAR_S_1_25))
results_STAAR_S_1_1 <- c(pvalues_2_tot[,i][(num_annotation+1):(2*num_annotation)],pvalues_STAAR_S_1_1)
results_STAAR_S_1_1 <- data.frame(t(results_STAAR_S_1_1))
results_STAAR_B_1_25 <- c(pvalues_2_tot[,i][(2*num_annotation+1):(3*num_annotation)],pvalues_STAAR_B_1_25)
results_STAAR_B_1_25 <- data.frame(t(results_STAAR_B_1_25))
results_STAAR_B_1_1 <- c(pvalues_2_tot[,i][(3*num_annotation+1):(4*num_annotation)],pvalues_STAAR_B_1_1)
results_STAAR_B_1_1 <- data.frame(t(results_STAAR_B_1_1))
results_STAAR_A_1_25 <- c(pvalues_2_tot[,i][(4*num_annotation+1):(5*num_annotation)],pvalues_STAAR_A_1_25)
results_STAAR_A_1_25 <- data.frame(t(results_STAAR_A_1_25))
results_STAAR_A_1_1 <- c(pvalues_2_tot[,i][(5*num_annotation+1):(6*num_annotation)],pvalues_STAAR_A_1_1)
results_STAAR_A_1_1 <- data.frame(t(results_STAAR_A_1_1))
colnames(results_STAAR_S_1_25) <- c("SKAT(1,25)",
paste0("SKAT(1,25)-",colnames(annotation_phred)),
"STAAR-S(1,25)")
colnames(results_STAAR_S_1_1) <- c("SKAT(1,1)",
paste0("SKAT(1,1)-",colnames(annotation_phred)),
"STAAR-S(1,1)")
colnames(results_STAAR_B_1_25) <- c("Burden(1,25)",
paste0("Burden(1,25)-",colnames(annotation_phred)),
"STAAR-B(1,25)")
colnames(results_STAAR_B_1_1) <- c("Burden(1,1)",
paste0("Burden(1,1)-",colnames(annotation_phred)),
"STAAR-B(1,1)")
colnames(results_STAAR_A_1_25) <- c("ACAT-V(1,25)",
paste0("ACAT-V(1,25)-",colnames(annotation_phred)),
"STAAR-A(1,25)")
colnames(results_STAAR_A_1_1) <- c("ACAT-V(1,1)",
paste0("ACAT-V(1,1)-",colnames(annotation_phred)),
"STAAR-A(1,1)")
results_weight2 <- cbind(results_weight2, c(num_variant = num_variant,
cMAC = cMAC,
results_STAAR_O = results_STAAR_O,
results_ACAT_O = results_ACAT_O,
results_STAAR_S_1_25 = results_STAAR_S_1_25,
results_STAAR_S_1_1 = results_STAAR_S_1_1,
results_STAAR_B_1_25 = results_STAAR_B_1_25,
results_STAAR_B_1_1 = results_STAAR_B_1_1,
results_STAAR_A_1_25 = results_STAAR_A_1_25,
results_STAAR_A_1_1 = results_STAAR_A_1_1))
}}
results_STAAR_O <- CCT(pvalues_aggregate)
results_ACAT_O <- CCT(pvalues_aggregate[c(1,num_annotation+1,2*num_annotation+1,3*num_annotation+1,4*num_annotation+1,5*num_annotation+1)])
pvalues_STAAR_S_1_25 <- CCT(pvalues_aggregate[1:num_annotation])
pvalues_STAAR_S_1_1 <- CCT(pvalues_aggregate[(num_annotation+1):(2*num_annotation)])
pvalues_STAAR_B_1_25 <- CCT(pvalues_aggregate[(2*num_annotation+1):(3*num_annotation)])
pvalues_STAAR_B_1_1 <- CCT(pvalues_aggregate[(3*num_annotation+1):(4*num_annotation)])
pvalues_STAAR_A_1_25 <- CCT(pvalues_aggregate[(4*num_annotation+1):(5*num_annotation)])
pvalues_STAAR_A_1_1 <- CCT(pvalues_aggregate[(5*num_annotation+1):(6*num_annotation)])
results_STAAR_S_1_25 <- c(pvalues_aggregate[1:num_annotation],pvalues_STAAR_S_1_25)
results_STAAR_S_1_25 <- data.frame(t(results_STAAR_S_1_25))
results_STAAR_S_1_1 <- c(pvalues_aggregate[(num_annotation+1):(2*num_annotation)],pvalues_STAAR_S_1_1)
results_STAAR_S_1_1 <- data.frame(t(results_STAAR_S_1_1))
results_STAAR_B_1_25 <- c(pvalues_aggregate[(2*num_annotation+1):(3*num_annotation)],pvalues_STAAR_B_1_25)
results_STAAR_B_1_25 <- data.frame(t(results_STAAR_B_1_25))
results_STAAR_B_1_1 <- c(pvalues_aggregate[(3*num_annotation+1):(4*num_annotation)],pvalues_STAAR_B_1_1)
results_STAAR_B_1_1 <- data.frame(t(results_STAAR_B_1_1))
results_STAAR_A_1_25 <- c(pvalues_aggregate[(4*num_annotation+1):(5*num_annotation)],pvalues_STAAR_A_1_25)
results_STAAR_A_1_25 <- data.frame(t(results_STAAR_A_1_25))
results_STAAR_A_1_1 <- c(pvalues_aggregate[(5*num_annotation+1):(6*num_annotation)],pvalues_STAAR_A_1_1)
results_STAAR_A_1_1 <- data.frame(t(results_STAAR_A_1_1))
if(dim(annotation_phred)[2] == 0){ #FALSE
colnames(results_STAAR_S_1_25) <- c("SKAT(1,25)","STAAR-S(1,25)")
colnames(results_STAAR_S_1_1) <- c("SKAT(1,1)","STAAR-S(1,1)")
colnames(results_STAAR_B_1_25) <- c("Burden(1,25)","STAAR-B(1,25)")
colnames(results_STAAR_B_1_1) <- c("Burden(1,1)","STAAR-B(1,1)")
colnames(results_STAAR_A_1_25) <- c("ACAT-V(1,25)","STAAR-A(1,25)")
colnames(results_STAAR_A_1_1) <- c("ACAT-V(1,1)","STAAR-A(1,1)")
}else{
colnames(results_STAAR_S_1_25) <- c("SKAT(1,25)",
paste0("SKAT(1,25)-",colnames(annotation_phred)),
"STAAR-S(1,25)")
colnames(results_STAAR_S_1_1) <- c("SKAT(1,1)",
paste0("SKAT(1,1)-",colnames(annotation_phred)),
"STAAR-S(1,1)")
colnames(results_STAAR_B_1_25) <- c("Burden(1,25)",
paste0("Burden(1,25)-",colnames(annotation_phred)),
"STAAR-B(1,25)")
colnames(results_STAAR_B_1_1) <- c("Burden(1,1)",
paste0("Burden(1,1)-",colnames(annotation_phred)),
"STAAR-B(1,1)")
colnames(results_STAAR_A_1_25) <- c("ACAT-V(1,25)",
paste0("ACAT-V(1,25)-",colnames(annotation_phred)),
"STAAR-A(1,25)")
colnames(results_STAAR_A_1_1) <- c("ACAT-V(1,1)",
paste0("ACAT-V(1,1)-",colnames(annotation_phred)),
"STAAR-A(1,1)")
}
if(find_weight == T){
return(list(num_variant = num_variant,
cMAC = cMAC,
RV_label = RV_label,
results_STAAR_O = results_STAAR_O,
results_ACAT_O = results_ACAT_O,
results_STAAR_S_1_25 = results_STAAR_S_1_25,
results_STAAR_S_1_1 = results_STAAR_S_1_1,
results_STAAR_B_1_25 = results_STAAR_B_1_25,
results_STAAR_B_1_1 = results_STAAR_B_1_1,
results_STAAR_A_1_25 = results_STAAR_A_1_25,
results_STAAR_A_1_1 = results_STAAR_A_1_1,
weight_all_1 = weight_all_1,
weight_all_2 = weight_all_2,
results_weight = results_weight,
results_weight1 = results_weight1,
results_weight2 = results_weight2))
}else{
return(list(num_variant = num_variant,
cMAC = cMAC,
RV_label = RV_label,
results_STAAR_O = results_STAAR_O,
results_ACAT_O = results_ACAT_O,
results_STAAR_S_1_25 = results_STAAR_S_1_25,
results_STAAR_S_1_1 = results_STAAR_S_1_1,
results_STAAR_B_1_25 = results_STAAR_B_1_25,
results_STAAR_B_1_1 = results_STAAR_B_1_1,
results_STAAR_A_1_25 = results_STAAR_A_1_25,
results_STAAR_A_1_1 = results_STAAR_A_1_1))
}
}else{
stop(paste0("Number of rare variant in the set is less than ",rv_num_cutoff,"!"))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.