Description Usage Arguments Value Examples
estimate coefficient of interest variables with known Svs, mlm.tstat
1 2  | 
dat.m | 
 n x m matrix of methylation microarray  | 
design | 
 design matrix for expression data matrix(data.m)  | 
coef | 
 covariate of interest; Default = 2  | 
B | 
 permutation number of covariates of interest  | 
full | 
 return full regression object; Optional FALSE  | 
list coefficient stdev_unscale sigma df.residule
1 2 3 4 5 6 7 8 9 10 11 12  | sd <- 0.3 * sqrt(4/rchisq(100, df = 4))
y  <- matrix(rnorm(100*6, sd = sd), 100, 6)  # each row of data is generate by sd[i] ~ invchisq
rownames(y) <- paste("cg", 1:100)
# introduce 2 cgs which are DMPs
y[1:2, 4:6] <- y[1:2, 4:6] + 2 # have significant differential when we introduce the poi(cancer - normal)
pheno <- factor(c(0,0,0,1,1,1))
levels(pheno) <- c("normal", "cancer")
design <- model.matrix(~ pheno)
fit <- mlm.fit(y, design)
sig.tab <- mlm.tstat(fit)
library(doMC)
registerDoMC(2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.