RunEnrichment | R Documentation |
Perform the enrichment analysis (over-representation) on the genes
RunEnrichment(
srt = NULL,
group_by = NULL,
test.use = "wilcox",
DE_threshold = "avg_log2FC > 0 & p_val_adj < 0.05",
geneID = NULL,
geneID_groups = NULL,
geneID_exclude = NULL,
IDtype = "symbol",
result_IDtype = "symbol",
species = "Homo_sapiens",
db = "GO_BP",
db_update = FALSE,
db_version = "latest",
db_combine = FALSE,
convert_species = TRUE,
Ensembl_version = 103,
mirror = NULL,
TERM2GENE = NULL,
TERM2NAME = NULL,
minGSSize = 10,
maxGSSize = 500,
unlimited_db = c("Chromosome", "GeneType", "TF", "Enzyme", "CSPA"),
GO_simplify = FALSE,
GO_simplify_cutoff = "p.adjust < 0.05",
simplify_method = "Wang",
simplify_similarityCutoff = 0.7,
BPPARAM = BiocParallel::bpparam(),
seed = 11
)
srt |
A Seurat object containing the results of differential expression analysis (RunDEtest).
If specified, the genes and groups will be extracted from the Seurat object automatically.
If not specified, the |
group_by |
A character vector specifying the grouping variable in the Seurat object. This argument is only used if |
test.use |
A character vector specifying the test to be used in differential expression analysis. This argument is only used if |
DE_threshold |
A character vector specifying the filter condition for differential expression analysis. This argument is only used if |
geneID |
A character vector specifying the gene IDs. |
geneID_groups |
A factor vector specifying the group labels for each gene. |
geneID_exclude |
A character vector specifying the gene IDs to be excluded from the analysis. |
IDtype |
A character vector specifying the type of gene IDs in the |
result_IDtype |
A character vector specifying the desired type of gene ID to be used in the output. This argument is used to convert the gene IDs from |
species |
A character vector specifying the species for which the analysis is performed. |
db |
A character vector specifying the name of the database to be used for enrichment analysis. |
db_update |
A logical value indicating whether the gene annotation databases should be forcefully updated. If set to FALSE, the function will attempt to load the cached databases instead. Default is FALSE. |
db_version |
A character vector specifying the version of the database to be used. This argument is ignored if |
db_combine |
A logical value indicating whether to combine multiple databases into one. If TRUE, all database specified by |
convert_species |
A logical value indicating whether to use a species-converted database when the annotation is missing for the specified species. The default value is TRUE. |
Ensembl_version |
Ensembl database version. If NULL, use the current release version. |
mirror |
Specify an Ensembl mirror to connect to. The valid options here are 'www', 'uswest', 'useast', 'asia'. |
TERM2GENE |
A data frame specifying the gene-term mapping for a custom database. The first column should contain the term IDs, and the second column should contain the gene IDs. |
TERM2NAME |
A data frame specifying the term-name mapping for a custom database. The first column should contain the term IDs, and the second column should contain the corresponding term names. |
minGSSize |
A numeric value specifying the minimum size of a gene set to be considered in the enrichment analysis. |
maxGSSize |
A numeric value specifying the maximum size of a gene set to be considered in the enrichment analysis. |
unlimited_db |
A character vector specifying the names of databases that do not have size restrictions. |
GO_simplify |
A logical value indicating whether to simplify the GO terms. If |
GO_simplify_cutoff |
A character vector specifying the filter condition for simplification of GO terms. This argument is only used if |
simplify_method |
A character vector specifying the method to be used for simplification of GO terms. This argument is only used if |
simplify_similarityCutoff |
A numeric value specifying the similarity cutoff for simplification of GO terms. This argument is only used if |
BPPARAM |
A BiocParallelParam object specifying the parallel back-end to be used for parallel computation. Defaults to BiocParallel::bpparam(). |
seed |
The random seed for reproducibility. Defaults to 11. |
If input is a Seurat object, returns the modified Seurat object with the enrichment result stored in the tools slot.
If input is a geneID vector with or without geneID_groups, return the enrichment result directly.
Enrichment result is a list with the following component:
enrichment
: A data.frame containing all enrichment results.
results
: A list of enrichResult
objects from the DOSE package.
geneMap
: A data.frame containing the ID mapping table for input gene IDs.
input
: A data.frame containing the input gene IDs and gene ID groups.
DE_threshold
: A specific threshold for differential expression analysis (only returned if input is a Seurat object).
PrepareDB
ListDB
EnrichmentPlot
RunGSEA
GSEAPlot
data("pancreas_sub")
pancreas_sub <- RunDEtest(pancreas_sub, group_by = "CellType")
pancreas_sub <- RunEnrichment(
srt = pancreas_sub, group_by = "CellType", DE_threshold = "p_val_adj < 0.05",
db = "GO_BP", species = "Mus_musculus"
)
EnrichmentPlot(pancreas_sub, db = "GO_BP", group_by = "CellType", plot_type = "comparison")
pancreas_sub <- RunEnrichment(
srt = pancreas_sub, group_by = "CellType", DE_threshold = "p_val_adj < 0.05",
db = c("MSigDB", "MSigDB_MH"), species = "Mus_musculus"
)
EnrichmentPlot(pancreas_sub, db = "MSigDB", group_by = "CellType", plot_type = "comparison")
EnrichmentPlot(pancreas_sub, db = "MSigDB_MH", group_by = "CellType", plot_type = "comparison")
# Remove redundant GO terms
pancreas_sub <- RunEnrichment(srt = pancreas_sub, group_by = "CellType", db = "GO_BP", GO_simplify = TRUE, species = "Mus_musculus")
EnrichmentPlot(pancreas_sub, db = "GO_BP_sim", group_by = "CellType", plot_type = "comparison")
# Use a combined database
pancreas_sub <- RunEnrichment(
srt = pancreas_sub, group_by = "CellType",
db = c("KEGG", "WikiPathway", "Reactome", "PFAM", "MP"),
db_combine = TRUE,
species = "Mus_musculus"
)
EnrichmentPlot(pancreas_sub, db = "Combined", group_by = "CellType", plot_type = "comparison")
# Or use "geneID" and "geneID_groups" as input to run enrichment
de_df <- dplyr::filter(pancreas_sub@tools$DEtest_CellType$AllMarkers_wilcox, p_val_adj < 0.05)
enrich_out <- RunEnrichment(geneID = de_df[["gene"]], geneID_groups = de_df[["group1"]], db = "GO_BP", species = "Mus_musculus")
EnrichmentPlot(res = enrich_out, db = "GO_BP", plot_type = "comparison")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.