RunPAGA | R Documentation |
PAGA is a graph-based method used to infer cellular trajectories. This function runs the PAGA analysis on a Seurat object.
RunPAGA(
srt = NULL,
assay_X = "RNA",
slot_X = "counts",
assay_layers = c("spliced", "unspliced"),
slot_layers = "counts",
adata = NULL,
group_by = NULL,
linear_reduction = NULL,
nonlinear_reduction = NULL,
basis = NULL,
n_pcs = 30,
n_neighbors = 30,
use_rna_velocity = FALSE,
vkey = "stochastic",
embedded_with_PAGA = FALSE,
paga_layout = "fr",
threshold = 0.1,
point_size = 20,
infer_pseudotime = FALSE,
root_group = NULL,
root_cell = NULL,
n_dcs = 10,
n_branchings = 0,
min_group_size = 0.01,
palette = "Paired",
palcolor = NULL,
show_plot = TRUE,
save = FALSE,
dpi = 300,
dirpath = "./",
fileprefix = "",
return_seurat = !is.null(srt)
)
srt |
A Seurat object. |
assay_X |
Assay to convert as the main data matrix (X) in the anndata object. |
slot_X |
Slot name for assay_X in the Seurat object. |
assay_layers |
Assays to convert as layers in the anndata object. |
slot_layers |
Slot names for the assay_layers in the Seurat object. |
adata |
An anndata object. |
group_by |
Variable to use for grouping cells in the Seurat object. |
linear_reduction |
Linear reduction method to use, e.g., "PCA". |
nonlinear_reduction |
Non-linear reduction method to use, e.g., "UMAP". |
basis |
The basis to use for reduction, e.g., "UMAP". |
n_pcs |
Number of principal components to use for linear reduction. Default is 30. |
n_neighbors |
Number of neighbors to use for constructing the KNN graph. Default is 30. |
use_rna_velocity |
Whether to use RNA velocity for PAGA analysis. Default is FALSE. |
vkey |
The name of the RNA velocity data to use if |
embedded_with_PAGA |
Whether to embed data using PAGA layout. Default is FALSE. |
paga_layout |
The layout for plotting PAGA graph. See See layout param in scanpy.pl.paga function. |
threshold |
The threshold for plotting PAGA graph. Edges for weights below this threshold will not draw. |
point_size |
The point size for plotting. |
infer_pseudotime |
Whether to infer pseudotime. |
root_group |
The group to use as the root for pseudotime inference. |
root_cell |
The cell to use as the root for pseudotime inference. |
n_dcs |
TThe number of diffusion components to use for pseudotime inference. |
n_branchings |
Number of branchings to detect. |
min_group_size |
The minimum size of a group (as a fraction of the total number of cells) to consider it as a potential branching point. |
palette |
The palette to use for coloring cells. |
palcolor |
A vector of colors to use as the palette. |
show_plot |
Whether to show the PAGA plot. |
save |
Whether to save the PAGA plots. |
dpi |
The DPI (dots per inch) for saving the PAGA plot. |
dirpath |
The directory to save the PAGA plots. |
fileprefix |
The file prefix to use for the PAGA plots. |
return_seurat |
Whether to return a Seurat object instead of an anndata object. Default is TRUE. |
srt_to_adata
PAGAPlot
CellDimPlot
RunSCVELO
data("pancreas_sub")
pancreas_sub <- RunPAGA(srt = pancreas_sub, assay_X = "RNA", group_by = "SubCellType", linear_reduction = "PCA", nonlinear_reduction = "UMAP")
CellDimPlot(pancreas_sub, group.by = "SubCellType", reduction = "draw_graph_fr")
PAGAPlot(pancreas_sub, reduction = "UMAP")
CellDimPlot(pancreas_sub, group.by = "SubCellType", reduction = "UMAP", paga = pancreas_sub@misc$paga)
pancreas_sub <- RunPAGA(
srt = pancreas_sub, group_by = "SubCellType", linear_reduction = "PCA", nonlinear_reduction = "UMAP",
embedded_with_PAGA = TRUE, infer_pseudotime = TRUE, root_group = "Ductal"
)
head(pancreas_sub[[]])
names(pancreas_sub@reductions)
FeatureDimPlot(pancreas_sub, features = "dpt_pseudotime", reduction = "PAGAUMAP2D")
PAGAPlot(pancreas_sub, reduction = "PAGAUMAP2D")
CellDimPlot(pancreas_sub, group.by = "SubCellType", reduction = "PAGAUMAP2D", paga = pancreas_sub@misc$paga)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.